我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python基本数据类型(三)

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python基本数据类型(三)

一、set的函数说明

集合(set)是一个无序不重复元素的序列,基本功能是进行成员关系测试和删除重复元素,可以使用大括号({})或者 set()函数创建集合;

注:创建一个空集合必须用set()而不是{ },因为{ }是用来创建一个空字典;

在python中set提供的函数如下:

class set(object):
    """
    set() -> 空的新集合对象;
    set(iterable) -> 新的集合对象;
    
    Build an unordered collection of unique elements.
    """
    def add(self, *args, **kwargs): # real signature unknown
        """
        
        在集合中增加元素,如果添加元素已存在于集合,则无效;
        例如:
        >>> x = set()
        >>> x.add('x')
        >>> x
        set(['x'])
        """
        pass
    def clear(self, *args, **kwargs): # real signature unknown
        """
         
        清空集合;
        例如:
        >>> x = set(['k1','k2'])
        >>> x
        set(['k2', 'k1'])
        >>> x.clear()
        >>> x
        set([])
        """
        pass
    def copy(self, *args, **kwargs): # real signature unknown
        """ 
        
        集合的浅拷贝;
        例如:
        >>> x = set(['k1','k2'])
        >>> y = x.copy()
        >>> y
        set(['k2', 'k1'])
        """
        pass
    def difference(self, *args, **kwargs): # real signature unknown
        """
        
        获取两个集合的不同(差集),并生成一个新的集合;
        即获取x.difference(y)的差集,相当于获取x多余y的集合值;
        如果x包含于y,则获取空值;
        例如:
        >>> x = set(['a','b','c'])
        >>> y = set(['a','b'])
        >>> s3 = x.difference(y)
        >>> s3
        set(['c'])
        >>> s4 = y.difference(x)
        >>> s4
        set([])
        """
        pass
    def difference_update(self, *args, **kwargs): # real signature unknown
        """ 
        
        获取两个集合的不同(差集),改变原来的集合;
        即获取x.difference_update(y)的差集,相当于获取x多余y的集合值,并重写进x;
        如果x包含于y,则获取空值,并重写进x;
        例如:
        >>> x = set(['a','b','c'])
        >>> y = set(['a','b'])
        >>> x.difference_update(y)
        >>> x
        set(['c'])
        >>> y
        set(['a', 'b'])
        >>> x = set(['a','b','c'])
        >>> y = set(['a','b'])
        >>> y.difference_update(x)
        >>> y
        set([])
        >>> x
        set(['a', 'c', 'b'])
        """
        pass
    def discard(self, *args, **kwargs): # real signature unknown
        """
        
        移除集合中的一个指定元素,如果这个元素不存在,则不变;
        例如:
        >>> x = set(['a','b','c'])
        >>> x.discard('a')
        >>> x
        set(['c', 'b'])
        >>> x.discard('d')
        >>> x
        set(['c', 'b'])
        """
        pass
    def intersection(self, *args, **kwargs): # real signature unknown
        """
        
        获取两个集合的交集,生成一个新的集合;
        即获取x.intersection(y)的交集,相当于获取x与y相等的那部分集合值;
        例如:
        >>> x = set(['a','b','c'])
        >>> y = set(['a','b'])
        >>> x.intersection(y)
        set(['a', 'b'])
        >>> x
        set(['a', 'c', 'b'])
        >>> y
        set(['a', 'b'])
        """
        pass
    def intersection_update(self, *args, **kwargs): # real signature unknown
        """
        
        获取两个集合的交集,改变原来的集合;
        即获取x.intersection_update(y)的交集,相当于获取x与y相等的那部分集合值,并重写进x;
        如果x包含于y,则无变化;
        例如:
        >>> x = set(['a','b','c'])
        >>> y = set(['a','b'])
        >>> x.intersection_update(y)
        >>> x
        set(['a', 'b'])
        >>> x = set(['a','b','c'])
        >>> y = set(['a','b'])
        >>> y.intersection_update(x)
        >>> y
        set(['a', 'b'])
        >>> x
        set(['a', 'c', 'b'])
        """
        pass
    def isdisjoint(self, *args, **kwargs): # real signature unknown
        """
        
        判断两个集合是否没有交集,如果是返回True,如果不是返回False;
        例如:
        >>> x = set(['a','b','c'])
        >>> y = set(['a','b'])
        >>> x.isdisjoint(y)
        False
        >>> y = set(['d'])
        >>> x.isdisjoint(y)
        True
        """
        pass
    def issubset(self, *args, **kwargs): # real signature unknown
        """
        
        判断一个集合是否是另一个集合的子集;
        即x.issubset(y),相当于判断x是否y的子集;
        例如:
        >>> x = set(['a','b','c'])
        >>> y = set(['a','b'])
        >>> x.issubset(y)
        False
        >>> y.issubset(x)
        True
        """
        pass
    def issuperset(self, *args, **kwargs): # real signature unknown
        """
        
        判断一个集合是否包含另一个集合;
        即x.issuperset(y),相当于判断x是否包含y;
        例如:
        >>> x = set(['a','b','c'])
        >>> y = set(['a','b'])
        >>> x.issuperset(y)
        True
        >>> y.issuperset(x)
        False
        """
        pass
    def pop(self, *args, **kwargs): # real signature unknown
        """
        
        删除并返回任意设置的元素,如果集合为空,则引发KeyError;
        例如:
        >>> x = set(['a','b','c'])
        >>> x.pop()
        'a'
        >>> x.pop()
        'c'
        >>> x.pop()
        'b'
        >>> x.pop()
        Traceback (most recent call last):
          File "<stdin>", line 1, in <module>
        KeyError: 'pop from an empty set'
        """
        pass
    def remove(self, *args, **kwargs): # real signature unknown
        """
        
        移除集合中指定的元素,如果集合为空或指定的元素不存在,则引发KeyError;
        例如:
        >>> x = set(['a','b','c'])
        >>> x.remove('b')
        >>> x
        set(['a', 'c'])
        >>> x.remove('d')
        Traceback (most recent call last):
          File "<stdin>", line 1, in <module>
        KeyError: 'd'
        """
        pass
    def symmetric_difference(self, *args, **kwargs): # real signature unknown
        """
        
        把两个集合中的不同元素,即差集,放到一个新的集合中;
        例如:
        >>> x = set(['a','b','c'])
        >>> y = set(['c','d'])
        >>> x.symmetric_difference(y)
        set(['a', 'b', 'd'])
        """
        pass
    def symmetric_difference_update(self, *args, **kwargs): # real signature unknown
        """
        
        两个集合不相同的元素,即差集,并改变原集合;
        例如:
        >>> x = set(['a','b','c'])
        >>> y = set(['c','d'])
        >>> x.symmetric_difference_update(y)
        >>> x
        set(['a', 'b', 'd'])
        >>> y
        set(['c', 'd'])
        """
        pass
    def union(self, *args, **kwargs): # real signature unknown
        """
        
        获取两个集合的并集,并生成一个新的集合;
        例如:
        >>> x = set(['a','b','c'])
        >>> y = set(['c','d'])
        >>> x.union(y)
        set(['a', 'c', 'b', 'd'])
        >>> x
        set(['a', 'c', 'b'])
        """
        pass
    def update(self, *args, **kwargs): # real signature unknown
        """
        
        获取两个集合的并集,并生改变原集合;
        例如:
        >>> x = set(['a','b','c'])
        >>> y = set(['c','d'])
        >>> x.update(y)
        >>> x
        set(['a', 'c', 'b', 'd'])
        >>> y
        set(['c', 'd'])
        """
        pass
    def __and__(self, y): # real signature unknown; restored from __doc__
        """ 
        x.__and__(y) 等同于 x&y
        
        集合与操作,相当于获取两个集合相同值,即交集,并进行返回; 
        例如:
        >>> x = set(['a','b','c'])
        >>> y = set(['c','d'])
        >>> x.__and__(y)
        set(['c'])
        >>> x
        set(['a', 'c', 'b'])
        >>> y
        set(['c', 'd'])
        >>> x = set(['a','b','c'])
        >>> y = set(['b','c'])
        >>> x & y
        set(['c', 'b'])
        """
        pass
    def __cmp__(self, y): # real signature unknown; restored from __doc__
        """ 
        x.__cmp__(y) 等同于 cmp(x,y)
        无意义  (Python2特有,Python3已删除)
        """
        pass
    def __contains__(self, y): # real signature unknown; restored from __doc__
        """ 
        x.__contains__(y) 等同于 y in x.
        集合包含判断,即判断y是否包含在x中,返回布尔值;
        例如:
        >>> x = set(['a','b','c'])
        >>> y = 'a'
        >>> x.__contains__(y)
        True
        >>> y in x
        True
        >>> y = 'd'
        >>> x.__contains__(y)
        False
        """
        pass
    def __eq__(self, y): # real signature unknown; restored from __doc__
        """ 
        x.__eq__(y) 等同于 x==y
        集合等同于判断,即判断x是否等于y,返回布尔值;
        例如:
        >>> x = set(['a','b','c'])
        >>> y = set(['a','b','c'])
        >>> x.__eq__(y)
        True
        >>> x == y
        True
        >>> y = set(['a','b'])
        >>> x == y
        False 
        """
        pass
    def __getattribute__(self, name): # real signature unknown; restored from __doc__
        """ 
        x.__getattribute__('name') 等同于 x.name 
        """
        pass
    def __ge__(self, y): # real signature unknown; restored from __doc__
        """ 
        x.__ge__(y) 等同于 x>=y
        集合大小等于判断,返回布尔值; 
        例如:
        >>> x = set(['a','b','c'])
        >>> y = set(['a','b'])
        >>> x.__ge__(y)
        True
        >>> x >= y
        True
        >>> y = set(['a','b','c'])
        >>> x >= y
        True
        >>> y = set(['a','b','c','d'])
        >>> x >= y
        False
        """
        pass
    def __gt__(self, y): # real signature unknown; restored from __doc__
        """ 
        x.__gt__(y) 等同于 x>y 
        集合大于判断,返回布尔值;
        例如:
        >>> x = set(['a','b','c'])
        >>> y = set(['a','b'])
        >>> x.__gt__(y)
        True
        >>> x > y
        True
        >>> y = set(['a','b','c'])
        >>> x > y
        False
        """
        pass
    def __iand__(self, y): # real signature unknown; restored from __doc__
        """ 
        x.__iand__(y) 等同于 x&=y 
        集合与操作,相当于获取两个集合相同值,即交集,并进行返回及修改集合x; 
        例如:
        >>> x = set(['a','b','c'])
        >>> y = set(['c','d'])
        >>> x.__iand__(y)
        set(['c'])
        >>> x
        set(['c'])
        >>> y
        set(['c', 'd'])
        >>> x = set(['a','b','c'])
        """
        pass
    def __init__(self, seq=()): # known special case of set.__init__
        """
        set() -> new empty set object
        set(iterable) -> new set object
        
        Build an unordered collection of unique elements.
        # (copied from class doc)
        构造方法,执行x = set()时自动调用集合函数;
        """
        pass
    def __ior__(self, y): # real signature unknown; restored from __doc__
        """ 
        x.__ior__(y) 等同于 x|=y 
        获取两个集合的并集,并进行返回及改变原集合;
        >>> x = set(['a','b','c'])
        >>> y = set(['c','d'])
        >>> x.__ior__(y)
        set(['a', 'c', 'b', 'd'])
        >>> x
        set(['a', 'c', 'b', 'd'])
        >>> y
        set(['c', 'd'])
        >>> x = set(['a','b','c'])
        >>> x |= y
        set(['a', 'c', 'b', 'd'])
        >>> x
        set(['a', 'c', 'b', 'd'])
        >>> y
        set(['c', 'd'])        
        """
        pass
    def __isub__(self, y): # real signature unknown; restored from __doc__
        """ 
        x.__isub__(y) 等同于 x-=y 
        集合减法,即x集合减去y集合,并进行结果返回及修改x集合;
        例如:
        >>> x = set(['a','b','c','d'])
        >>> y = set(['c','d'])
        >>> x.__isub__(y)
        set(['a', 'b'])
        >>> x
        set(['a', 'b'])
        >>> y
        set(['c', 'd'])
        """
        pass
    def __iter__(self): # real signature unknown; restored from __doc__
        """ 
        x.__iter__() 等同于 iter(x) 
        迭代对象,返回自己;
        """
        pass
    def __ixor__(self, y): # real signature unknown; restored from __doc__
        """ 
        x.__ixor__(y) 等同于 x^=y 
        把两个集合中的不同元素(对称差集)放到一个原集合中,即把x与y集合的不同元素,放置到x集合中;
        例如:
        >>> x = set(['a','b','c'])
        >>> y = set(['c','d'])
        >>> x.__ixor__(y)
        set(['a', 'b', 'd'])
        >>> x
        set(['a', 'b', 'd'])
        >>> y
        set(['c', 'd'])
        >>> x = set(['a','b','c'])
        >>> x ^= y
        set(['a', 'b', 'd'])
        >>> x
        set(['a', 'b', 'd'])
        >>> y
        set(['c', 'd'])
        """
        pass
    def __len__(self): # real signature unknown; restored from __doc__
        """ 
        x.__len__() 等同于 len(x) 
        返回集合长度;
        """
        pass
    def __le__(self, y): # real signature unknown; restored from __doc__
        """ 
        x.__le__(y) 等同于 x<=y 
        集合小于判断,返回布尔值;
        """
        pass
    def __lt__(self, y): # real signature unknown; restored from __doc__
        """ 
        x.__lt__(y) 等同于 x<y 
        集合小于判断,返回布尔值;
        """
        pass
    @staticmethod # known case of __new__
    def __new__(S, *more): # real signature unknown; restored from __doc__
        """ 
        T.__new__(S, ...) -> a new object with type S, a subtype of T 
        """
        pass
    def __ne__(self, y): # real signature unknown; restored from __doc__
        """ 
        x.__ne__(y) 等同于 x!=y 
        集合不等于判断,返回布尔值;
        """
        pass
    def __or__(self, y): # real signature unknown; restored from __doc__
        """ 
        x.__or__(y) 等同于 x|y 
        获取两个集合的并集,并生成一个新的集合;
        例如:
        >>> x = set(['a','b','c'])
        >>> y = set(['c','d'])
        >>> x.__or__(y)
        set(['a', 'c', 'b', 'd'])
        >>> x
        set(['a', 'c', 'b'])
        >>> y
        set(['c', 'd'])
        >>> y | x
        set(['a', 'c', 'b', 'd'])
        >>> x
        set(['a', 'c', 'b'])
        >>> y
        set(['c', 'd'])
        """
        pass
    def __rand__(self, y): # real signature unknown; restored from __doc__
        """ 
        x.__rand__(y) 等同于 y&x 
        获取两个集合的交集,生成一个新的集合;
        例如:
        >>> x = set(['a','b'])
        >>> y = set(['a','b','c'])
        >>> x.__rand__(y)
        set(['a', 'b'])
        >>> y & x
        set(['a', 'b'])
        """
        pass
    def __reduce__(self, *args, **kwargs): # real signature unknown
        """ 
        Return state information for pickling. 
        """
        pass
    def __repr__(self): # real signature unknown; restored from __doc__
        """ 
        x.__repr__() 等同于 repr(x) 
        转化为解释器可读取的形式,即转换为字符串格式;
        """
        pass
    def __ror__(self, y): # real signature unknown; restored from __doc__
        """ 
        x.__ror__(y) 等同于 y|x 
        获取两个集合的并集,并生成一个新的集合;;
        例如:
        >>> x = set(['a','b'])
        >>> y = set(['a','b','c'])
        >>> x.__ror__(y)
        set(['a', 'c', 'b'])
        >>> x
        set(['a', 'b'])
        >>> y
        set(['a', 'c', 'b'])
        >>> y | x
        set(['a', 'c', 'b'])
        """
        pass
    def __rsub__(self, y): # real signature unknown; restored from __doc__
        """ 
        x.__rsub__(y) 等同于 y-x 
        获取两个集合的不同(差集),并生成一个新的集合(项在y中,但不在x中);
        例如:
        >>> x = set(['a','b'])
        >>> y = set(['a','b','c'])
        >>> x.__rsub__(y)
        set(['c'])
        >>> y.__rsub__(x)
        set([])
        """
        pass
    def __rxor__(self, y): # real signature unknown; restored from __doc__
        """ 
        x.__rxor__(y) 等同于 y^x 
        获取两个集合的不同(差集),并生成一个新的集合
        例如:
        >>> x = set(['a','b','c'])
        >>> y = set(['c','d'])
        >>> x.__rxor__(y)
        set(['a', 'b', 'd'])
        >>> x
        set(['a', 'c', 'b'])
        >>> y
        set(['c', 'd'])
        >>> y ^ x
        set(['a', 'b', 'd'])
        """
        pass
    def __sizeof__(self): # real signature unknown; restored from __doc__
        """ 
        S.__sizeof__() -> size of S in memory, in bytes 
        返回内存中的大小(以字节为单位);
        """
        pass
    def __sub__(self, y): # real signature unknown; restored from __doc__
        """ 
        x.__sub__(y) 等同于 x-y 
        获取两个集合的不同(差集),并生成一个新的集合(项在x中,但不在y中);
        例如:
        >>> x = set(['a','b','c'])
        >>> y = set(['c','d'])
        >>> x.__sub__(y)
        set(['a', 'b'])
        >>> x
        set(['a', 'c', 'b'])
        >>> y
        set(['c', 'd'])
        >>> y - x
        set(['d'])
        """
        pass
    def __xor__(self, y): # real signature unknown; restored from __doc__
        """ 
        x.__xor__(y) 等同于 x^y 
        两个集合不相同的元素(差集),并返回结果;
        >>> x = set(['a','b','c'])
        >>> y = set(['c','d'])
        >>> x.__xor__(y)
        set(['a', 'b', 'd'])
        >>> x
        set(['a', 'c', 'b'])
        >>> x
        set(['c', 'd'])
        >>> y ^ x
        set(['a', 'b', 'd'])
        """
        pass
    __hash__ = None

二、collection系列函数说明

collections模块自Python 2.4版本开始被引入,包含了dict、set、list、tuple以外的一些特殊的容器类型,分别是:

OrderedDict类:排序字典,是字典的子类。引入自2.7;

namedtuple()函数:命名元组,是一个工厂函数。引入自2.6;

Counter类:为hashable对象计数,是字典的子类。引入自2.7;

deque:双向队列。引入自2.4;

defaultdict:使用工厂函数创建字典,使不用考虑缺失的字典键。引入自2.5;

使用的时候需要用import导入collections模块;

1、计数器(counter)函数说明

Counter类的目的是用来跟踪值出现的次数。它是一个无序的容器类型,以字典的键值对形式存储,其中元素作为key,其计数作为value。计数值可以是任意的Interger(包括0和负数);

注:具备字典的所有功能 + 自己的功能;

########################################################################
###  Counter
########################################################################
def _count_elements(mapping, iterable):
    'Tally elements from the iterable.'
    mapping_get = mapping.get
    for elem in iterable:
        mapping[elem] = mapping_get(elem, 0) + 1
try:                                    # Load C helper function if available
    from _collections import _count_elements
except ImportError:
    pass
'''
如果C的帮助函数可用的话,则加载; (Python3新增)
'''
class Counter(dict):
    '''
    Dict子类用于计算哈希项,有时称为包或多集,元素存储为字典键,它们的计数存储为字典值;
    >>> c = Counter('abcdeabcdabcaba')  # count elements from a string
    >>> c.most_common(3)                # three most common elements
    [('a', 5), ('b', 4), ('c', 3)]
    >>> sorted(c)                       # list all unique elements
    ['a', 'b', 'c', 'd', 'e']
    >>> ''.join(sorted(c.elements()))   # list elements with repetitions
    'aaaaabbbbcccdde'
    >>> sum(c.values())                 # total of all counts
    15
    >>> c['a']                          # count of letter 'a'
    5
    >>> for elem in 'shazam':           # update counts from an iterable
    ...     c[elem] += 1                # by adding 1 to each element's count
    >>> c['a']                          # now there are seven 'a'
    7
    >>> del c['b']                      # remove all 'b'
    >>> c['b']                          # now there are zero 'b'
    0
    >>> d = Counter('simsalabim')       # make another counter
    >>> c.update(d)                     # add in the second counter
    >>> c['a']                          # now there are nine 'a'
    9
    >>> c.clear()                       # empty the counter
    >>> c
    Counter()
    Note:  If a count is set to zero or reduced to zero, it will remain
    in the counter until the entry is deleted or the counter is cleared:
    >>> c = Counter('aaabbc')
    >>> c['b'] -= 2                     # reduce the count of 'b' by two
    >>> c.most_common()                 # 'b' is still in, but its count is zero
    [('a', 3), ('c', 1), ('b', 0)]
    '''
    # References:
    #   http://en.wikipedia.org/wiki/Multiset
    #   http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html
    #   http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm
    #   http://code.activestate.com/recipes/259174/
    #   Knuth, TAOCP Vol. II section 4.6.3
    def __init__(*args, **kwds):
        '''
        创建一个新的空Counter对象,可对输入可迭代元素进行计数,也可以对另外一个元素映射过来的元素进行计数;
        主要是先调用父类(dict)的初始化,然后使用update函数来更新参数;
        >>> c = Counter()                           # a new, empty counter
        >>> c = Counter('gallahad')                 # a new counter from an iterable
        >>> c = Counter({'a': 4, 'b': 2})           # a new counter from a mapping
        >>> c = Counter(a=4, b=2)                   # a new counter from keyword args
        '''
        if not args:
            raise TypeError("descriptor '__init__' of 'Counter' object "
                            "needs an argument")
        self, *args = args
        if len(args) > 1:
            raise TypeError('expected at most 1 arguments, got %d' % len(args))
        super(Counter, self).__init__()
        self.update(*args, **kwds)
    def __missing__(self, key):
        'The count of elements not in the Counter is zero.'
        # Needed so that self[missing_item] does not raise KeyError
        return 0
        '''
        对于不存在的元素,返回计数器为0;
        总结一下就是dict本身没有这个方法,但是如果当前类为dict的子类的话;
        会在缺失的情况下查看有没有实现__missing__方法,如果有的话,就返回__miss__方法的值;
        所以Counter作为dict的子类实现了__missing__方法,在缺失的时候返回0;
        这也就是为什么在Counter类中,如果找不到key,会返回0而不是产生一个KeyError;
        例如:
        >>> import collections
        >>> c = collections.Counter('abbcc')
        >>> c['a']
        2
        >>> c['b']
        2
        >>> c['d']
        0
        '''
    def most_common(self, n=None):
        '''List the n most common elements and their counts from the most
        common to the least.  If n is None, then list all element counts.
        >>> Counter('abcdeabcdabcaba').most_common(3)
        [('a', 5), ('b', 4), ('c', 3)]
        '''
        # Emulate Bag.sortedByCount from Smalltalk
        if n is None:
            return sorted(self.items(), key=_itemgetter(1), reverse=True)
        return _heapq.nlargest(n, self.items(), key=_itemgetter(1))
        '''
        数量从大到写排列,返回一个TopN列表,如果n没有被指定,则返回所有元素;
        当多个元素计数值相同时,按照字母序排列;
        例如:
        >>> Counter('abcdeabcdabcaba').most_common(3)
        [('a', 5), ('b', 4), ('c', 3)]
        '''
    def elements(self):
        '''Iterator over elements repeating each as many times as its count.
        >>> c = Counter('ABCABC')
        >>> sorted(c.elements())
        ['A', 'A', 'B', 'B', 'C', 'C']
        # Knuth's example for prime factors of 1836:  2**2 * 3**3 * 17**1
        >>> prime_factors = Counter({2: 2, 3: 3, 17: 1})
        >>> product = 1
        >>> for factor in prime_factors.elements():     # loop over factors
        ...     product *= factor                       # and multiply them
        >>> product
        1836
        Note, if an element's count has been set to zero or is a negative
        number, elements() will ignore it.
        '''
        # Emulate Bag.do from Smalltalk and Multiset.begin from C++.
        return _chain.from_iterable(_starmap(_repeat, self.items()))
        '''
        返回一个迭代器。元素被重复了多少次,在该迭代器中就包含多少个该元素;
        所有元素按照字母序排序,个数小于1的元素不被包含;
        注:此处非所有元素集合,而是包含所有元素集合的迭代器; 
        例如:
        >>> import collections
        >>> c = collections.Counter(a=4, b=2, c=0, d=-2)
        >>> list(c.elements())
        ['a', 'a', 'a', 'a', 'b', 'b']
        '''
    # Override dict methods where necessary
    @classmethod
    def fromkeys(cls, iterable, v=None):
        # There is no equivalent method for counters because setting v=1
        # means that no element can have a count greater than one.
        raise NotImplementedError(
            'Counter.fromkeys() is undefined.  Use Counter(iterable) instead.')
            '''
            未实现的类方法;
            '''
    def update(*args, **kwds):
        '''Like dict.update() but add counts instead of replacing them.
        Source can be an iterable, a dictionary, or another Counter instance.
        >>> c = Counter('which')
        >>> c.update('witch')           # add elements from another iterable
        >>> d = Counter('watch')
        >>> c.update(d)                 # add elements from another counter
        >>> c['h']                      # four 'h' in which, witch, and watch
        4
        '''
        # The regular dict.update() operation makes no sense here because the
        # replace behavior results in the some of original untouched counts
        # being mixed-in with all of the other counts for a mismash that
        # doesn't have a straight-forward interpretation in most counting
        # contexts.  Instead, we implement straight-addition.  Both the inputs
        # and outputs are allowed to contain zero and negative counts.
        if not args:
            raise TypeError("descriptor 'update' of 'Counter' object "
                            "needs an argument")
        self, *args = args
        if len(args) > 1:
            raise TypeError('expected at most 1 arguments, got %d' % len(args))
        iterable = args[0] if args else None
        if iterable is not None:
            if isinstance(iterable, Mapping):
                if self:
                    self_get = self.get
                    for elem, count in iterable.items():
                        self[elem] = count + self_get(elem, 0)
                else:
                    super(Counter, self).update(iterable) # fast path when counter is empty
            else:
                _count_elements(self, iterable)
        if kwds:
            self.update(kwds)
        '''
        更新计数器,其实就是增加;如果原来没有,则新建,如果有则加一;
        例如:
        >>> from collections import Counter
        >>> c = Counter('which')
        >>> c
        Counter({'h': 2, 'i': 1, 'c': 1, 'w': 1})
        >>> c.update('witch')
        >>> c
        Counter({'h': 3, 'i': 2, 'c': 2, 'w': 2, 't': 1})
        >>> c['h']
        3
        >>> d = Counter('watch')
        >>> d
        Counter({'a': 1, 'h': 1, 'c': 1, 't': 1, 'w': 1})
        >>> c.update(d)
        >>> c
        Counter({'h': 4, 'c': 3, 'w': 3, 'i': 2, 't': 2, 'a': 1})
        >>> c['h']
        4
        '''
    def subtract(*args, **kwds):
        '''Like dict.update() but subtracts counts instead of replacing them.
        Counts can be reduced below zero.  Both the inputs and outputs are
        allowed to contain zero and negative counts.
        Source can be an iterable, a dictionary, or another Counter instance.
        >>> c = Counter('which')
        >>> c.subtract('witch')             # subtract elements from another iterable
        >>> c.subtract(Counter('watch'))    # subtract elements from another counter
        >>> c['h']                          # 2 in which, minus 1 in witch, minus 1 in watch
        0
        >>> c['w']                          # 1 in which, minus 1 in witch, minus 1 in watch
        -1
        '''
        if not args:
            raise TypeError("descriptor 'subtract' of 'Counter' object "
                            "needs an argument")
        self, *args = args
        if len(args) > 1:
            raise TypeError('expected at most 1 arguments, got %d' % len(args))
        iterable = args[0] if args else None
        if iterable is not None:
            self_get = self.get
            if isinstance(iterable, Mapping):
                for elem, count in iterable.items():
                    self[elem] = self_get(elem, 0) - count
            else:
                for elem in iterable:
                    self[elem] = self_get(elem, 0) - 1
        if kwds:
            self.subtract(kwds)
        '''
        相减,原来的计数器中的每一个元素的数量减去后添加的元素的数量;
        例如:
        >>> from collections import Counter
        >>> c = Counter('which')
        >>> c.subtract('witch')
        >>> c
        Counter({'h': 1, 'i': 0, 'c': 0, 'w': 0, 't': -1})
        >>> c['h']
        1
        >>> d = Counter('watch')
        >>> c.subtract(d)
        >>> c['a']
        -1
        '''
    def copy(self):
        'Return a shallow copy.'
        return self.__class__(self)
        '''
        浅拷贝;
        例如:
        >>> from collections import Counter
        >>> c = Counter('abcdcba')
        >>> c
        Counter({'a': 2, 'c': 2, 'b': 2, 'd': 1})
        >>> d = c.copy()
        >>> d
        Counter({'a': 2, 'c': 2, 'b': 2, 'd': 1})
        '''
    def __reduce__(self):
        return self.__class__, (dict(self),)
        '''
        返回一个元组(类型,元组);
        例如:
        >>> c = Counter('abcdcba')
        >>> c.__reduce__()
        (<class 'collections.Counter'>, ({'a': 2, 'c': 2, 'b': 2, 'd': 1},))
        >>> d = c.__reduce__()
        >>> type(d)
        <type 'tuple'>
        '''
    def __delitem__(self, elem):
        'Like dict.__delitem__() but does not raise KeyError for missing values.'
        if elem in self:
            super().__delitem__(elem)
        '''
        删除元素,等同于del;
        本质上就是一个不抛出KeyError的dict类的__delitem()__;
        >>> c = Counter('abcdcba')
        >>> c
        Counter({'a': 2, 'c': 2, 'b': 2, 'd': 1})
        >>> c['b'] = 0
        >>> c
        Counter({'a': 2, 'c': 2, 'd': 1, 'b': 0})
        >>> c.__delitem__('a')
        >>> c
        Counter({'c': 2, 'd': 1, 'b': 0})
        >>> del c['b']
        >>> c
        Counter({'c': 2, 'd': 1})
        '''
    def __repr__(self):
        if not self:
            return '%s()' % self.__class__.__name__
        try:
            items = ', '.join(map('%r: %r'.__mod__, self.most_common()))
            return '%s({%s})' % (self.__class__.__name__, items)
        except TypeError:
            # handle case where values are not orderable
            return '{0}({1!r})'.format(self.__class__.__name__, dict(self))
        '''
        如果没有对象就返回类的名字,否则返回类的名字并且返回利用most_common()方法得到类中的信息;
        例如:
        >>> from collections import Counter
        >>> c = Counter('aabbccdd')
        >>> c.__repr__()
        "Counter({'a': 2, 'c': 2, 'b': 2, 'd': 2})"
        >>> c = Counter()
        >>> c.__repr__()
        'Counter()'
        '''
    # Multiset-style mathematical operations discussed in:
    #       Knuth TAOCP Volume II section 4.6.3 exercise 19
    #       and at http://en.wikipedia.org/wiki/Multiset
    #
    # Outputs guaranteed to only include positive counts.
    #
    # To strip negative and zero counts, add-in an empty counter:
    #       c += Counter()
    def __add__(self, other):
        '''Add counts from two counters.
        >>> Counter('abbb') + Counter('bcc')
        Counter({'b': 4, 'c': 2, 'a': 1})
        '''
        if not isinstance(other, Counter):
            return NotImplemented
        result = Counter()
        for elem, count in self.items():
            newcount = count + other[elem]
            if newcount > 0:
                result[elem] = newcount
        for elem, count in other.items():
            if elem not in self and count > 0:
                result[elem] = count
        return result
        '''
        加法运算,相当于+,结果中只会出现计数count大于0的元素;
        例如:
        >>> c1 = Counter({'a':0,'b':1,'c':3})
        >>> c2 = Counter({'b':2,'c':1})
        >>> c1.__add__(c2)
        Counter({'c': 4, 'b': 3})
        >>> c1 + c2
        Counter({'c': 4, 'b': 3})
        '''
    def __sub__(self, other):
        ''' Subtract count, but keep only results with positive counts.
        >>> Counter('abbbc') - Counter('bccd')
        Counter({'b': 2, 'a': 1})
        '''
        if not isinstance(other, Counter):
            return NotImplemented
        result = Counter()
        for elem, count in self.items():
            newcount = count - other[elem]
            if newcount > 0:
                result[elem] = newcount
        for elem, count in other.items():
            if elem not in self and count < 0:
                result[elem] = 0 - count
        return result
        '''
        减法运算,相当于-,结果中只会出现计数count大于0的元素;
        例如:
        >>> c1 = Counter({'a':0,'b':1,'c':3})
        >>> c2 = Counter({'b':2,'c':1})
        >>> c1.__sub__(c2)
        Counter({'c': 2})
        >>> c1 - c2
        Counter({'c': 2})
        '''
    def __or__(self, other):
        '''Union is the maximum of value in either of the input counters.
        >>> Counter('abbb') | Counter('bcc')
        Counter({'b': 3, 'c': 2, 'a': 1})
        '''
        if not isinstance(other, Counter):
            return NotImplemented
        result = Counter()
        for elem, count in self.items():
            other_count = other[elem]
            newcount = other_count if count < other_count else count
            if newcount > 0:
                result[elem] = newcount
        for elem, count in other.items():
            if elem not in self and count > 0:
                result[elem] = count
        return result
        '''
        并集运算,相当于|,结果中只会出现计数count大于0的元素及主要是选相同元素中count最大的一个;
        例如:
        >>> c1 = Counter({'a':0,'b':1,'c':3})
        >>> c2 = Counter({'b':2,'c':1})
        >>> c1.__or__(c2)
        Counter({'c': 3, 'b': 2})
        >>> c1 | c2
        Counter({'c': 3, 'b': 2})
        '''
    def __and__(self, other):
        ''' Intersection is the minimum of corresponding counts.
        >>> Counter('abbb') & Counter('bcc')
        Counter({'b': 1})
        '''
        if not isinstance(other, Counter):
            return NotImplemented
        result = Counter()
        for elem, count in self.items():
            other_count = other[elem]
            newcount = count if count < other_count else other_count
            if newcount > 0:
                result[elem] = newcount
        return result
        '''
        交集运算,相当于&,结果中只会出现计数count大于0的元素及主要是选相同元素中count最小的一个;
        例如:
        >>> c1 = Counter({'a':0,'b':1,'c':3})
        >>> c2 = Counter({'b':2,'c':1})
        >>> c1.__and__(c2)
        Counter({'c': 1, 'b': 1})
        >>> c1 & c2
        Counter({'c': 1, 'b': 1})
        '''
    def __pos__(self):
        'Adds an empty counter, effectively stripping negative and zero counts'
        result = Counter()
        for elem, count in self.items():
            if count > 0:
                result[elem] = count
        return result
        '''
        用于清除值为负数和零的计数; (Python3新增)
        例如:
        >>> from collections import Counter
        >>> c1 = Counter({'a':0,'b':1,'c':-3})
        >>> c1.__pos__()
        Counter({'b': 1})
        '''
    def __neg__(self):
        '''Subtracts from an empty counter.  Strips positive and zero counts,
        and flips the sign on negative counts.
        '''
        result = Counter()
        for elem, count in self.items():
            if count < 0:
                result[elem] = 0 - count
        return result
        '''
        用于清除值为正数或者零的计数,并将值为负数的计数,转换为正数; (Python3新增)
        例如:
        >>> c1 = Counter({'a':0,'b':1,'c':-3})
        >>> c1.__neg__()
        Counter({'c': 3})
        '''
    def _keep_positive(self):
        '''Internal method to strip elements with a negative or zero count'''
        nonpositive = [elem for elem, count in self.items() if not count > 0]
        for elem in nonpositive:
            del self[elem]
        return self
    def __iadd__(self, other):
        '''Inplace add from another counter, keeping only positive counts.
        >>> c = Counter('abbb')
        >>> c += Counter('bcc')
        >>> c
        Counter({'b': 4, 'c': 2, 'a': 1})
        '''
        for elem, count in other.items():
            self[elem] += count
        return self._keep_positive()
        '''
        自加,相当于+=,结果中只会出现计数count大于0的元素; (Python3新增)
        例如:
        >>> c1 = Counter({'a':0,'b':1,'c':3})
        >>> c1 += Counter({'b':2,'c':1})
        >>> c1
        Counter({'c': 4, 'b': 3})
        '''
    def __isub__(self, other):
        '''Inplace subtract counter, but keep only results with positive counts.
        >>> c = Counter('abbbc')
        >>> c -= Counter('bccd')
        >>> c
        Counter({'b': 2, 'a': 1})
        '''
        for elem, count in other.items():
            self[elem] -= count
        return self._keep_positive()
        '''
        自减,相当于-=,结果中只会出现计数count大于0的元素; (Python3新增)
        例如:
        >>> c1 = Counter({'a':0,'b':1,'c':3})
        >>> c1 -= Counter({'b':1,'c':1})
        >>> c1
        Counter({'c': 2})
        '''
    def __ior__(self, other):
        '''Inplace union is the maximum of value from either counter.
        >>> c = Counter('abbb')
        >>> c |= Counter('bcc')
        >>> c
        Counter({'b': 3, 'c': 2, 'a': 1})
        '''
        for elem, other_count in other.items():
            count = self[elem]
            if other_count > count:
                self[elem] = other_count
        return self._keep_positive()
        '''
        自并集运算,相当于|=,结果中只会出现计数count大于0的元素及主要是选相同元素中count最大的一个; (Python3新增)
        例如:
        >>> c1 = Counter({'a':0,'b':1,'c':3})
        >>> c1 |= Counter({'b':1,'d':2})
        >>> c1
        Counter({'c': 3, 'd': 2, 'b': 1})
        '''
    def __iand__(self, other):
        '''Inplace intersection is the minimum of corresponding counts.
        >>> c = Counter('abbb')
        >>> c &= Counter('bcc')
        >>> c
        Counter({'b': 1})
        '''
        for elem, count in self.items():
            other_count = other[elem]
            if other_count < count:
                self[elem] = other_count
        return self._keep_positive()
        '''
        自交集运算,相当于&=,结果中只会出现计数count大于0的元素及主要是选相同元素中count最小的一个; (Python3新增)
        例如:
        >>> c1 = Counter({'a':0,'b':1,'c':3})
        >>> c1 &= Counter({'b':1,'d':2})
        >>> c1
        Counter({'b': 1})
        '''

2、有序字典(OrderdDict)函数说明

OrderdDict是对字典类型的补充,他记住了字典元素添加的顺序;

################################################################################
### OrderedDict
################################################################################
class _OrderedDictKeysView(KeysView):
    def __reversed__(self):
        yield from reversed(self._mapping)
'''
用于被OrderedDict的keys方法调用; (Python3新增)
'''
class _OrderedDictItemsView(ItemsView):
    def __reversed__(self):
        for key in reversed(self._mapping):
            yield (key, self._mapping[key])
'''
用于被OrderedDict的items方法调用; (Python3新增)
'''
class _OrderedDictValuesView(ValuesView):
    def __reversed__(self):
        for key in reversed(self._mapping):
            yield self._mapping[key]
'''
用于被OrderedDict的values方法调用; (Python3新增)
'''
class _Link(object):
    __slots__ = 'prev', 'next', 'key', '__weakref__'
'''
未实现的方法; (Python3新增)
'''
class OrderedDict(dict):
    'Dictionary that remembers insertion order'
    # An inherited dict maps keys to values.
    # The inherited dict provides __getitem__, __len__, __contains__, and get.
    # The remaining methods are order-aware.
    # Big-O running times for all methods are the same as regular dictionaries.
    # The internal self.__map dict maps keys to links in a doubly linked list.
    # The circular doubly linked list starts and ends with a sentinel element.
    # The sentinel element never gets deleted (this simplifies the algorithm).
    # The sentinel is in self.__hardroot with a weakref proxy in self.__root.
    # The prev links are weakref proxies (to prevent circular references).
    # Individual links are kept alive by the hard reference in self.__map.
    # Those hard references disappear when a key is deleted from an OrderedDict.
    '''
    记住插入顺序的字典;
    继承的dict的keys和values;
    继承的dict提供__getitem__,__len__,__contains__和get方法;
    其余的方法都按顺序执行;
    所有方法的执行时间都和普通字典一样;
    引用在OrderedDict删除键时消失;
    '''
    def __init__(*args, **kwds):
        '''
        初始化有序字典。签名与常规字典相同,但不推荐使用关键字参数,因为插入顺序;
        '''
        if not args:
            raise TypeError("descriptor '__init__' of 'OrderedDict' object "
                            "needs an argument")
        self, *args = args
        if len(args) > 1:
            raise TypeError('expected at most 1 arguments, got %d' % len(args))
        try:
            self.__root
        except AttributeError:
            self.__hardroot = _Link()
            self.__root = root = _proxy(self.__hardroot)
            root.prev = root.next = root
            self.__map = {}
        self.__update(*args, **kwds)
    def __setitem__(self, key, value,
                    dict_setitem=dict.__setitem__, proxy=_proxy, Link=_Link):
        'od.__setitem__(i, y) <==> od[i]=y'
        # Setting a new item creates a new link at the end of the linked list,
        # and the inherited dictionary is updated with the new key/value pair.
        if key not in self:
            self.__map[key] = link = Link()
            root = self.__root
            last = root.prev
            link.prev, link.next, link.key = last, root, key
            last.next = link
            root.prev = proxy(link)
        dict_setitem(self, key, value)
        '''
        od.__setitem__(i, y)等同于od[i]=y;
        设置的新项目会在链接列表的末尾创建一个新链接,并且继承的字典使用新的键/值对进行更新方法;
        例如:
        >>> from collections import OrderedDict
        >>> od = OrderedDict({'k1':'v1','k2':'v2','k3':'v3'})
        >>> od
        OrderedDict([('k1', 'v1'), ('k2', 'v2'), ('k3', 'v3')])
        >>> od.__setitem__('k4','v4')
        >>> od
        OrderedDict([('k1', 'v1'), ('k2', 'v2'), ('k3', 'v3'), ('k4', 'v4')])
        >>> od['k5'] = 'v5'
        >>> od
        OrderedDict([('k1', 'v1'), ('k2', 'v2'), ('k3', 'v3'), ('k4', 'v4'), ('k5', 'v5')])
        '''
    def __delitem__(self, key, dict_delitem=dict.__delitem__):
        'od.__delitem__(y) <==> del od[y]'
        # Deleting an existing item uses self.__map to find the link which gets
        # removed by updating the links in the predecessor and successor nodes.
        dict_delitem(self, key)
        link = self.__map.pop(key)
        link_prev = link.prev
        link_next = link.next
        link_prev.next = link_next
        link_next.prev = link_prev
        link.prev = None
        link.next = None
        '''
        od.__delitem__(y)等同于del od[y];
        使用self.__map找到现有项目并进行删除,删除后通过更新前导节点和后继节点的链接来覆盖删除的链接;
        例如:
        >>> od = OrderedDict({'k1':'v1','k2':'v2','k3':'v3'})
        >>> od.__delitem__('k1')
        >>> od
        OrderedDict([('k2', 'v2'), ('k3', 'v3')])
        >>> del od['k2']
        >>> od
        OrderedDict([('k3', 'v3')])
        '''
    def __iter__(self):
        'od.__iter__() <==> iter(od)'
        # Traverse the linked list in order.
        root = self.__root
        curr = root.next
        while curr is not root:
            yield curr.key
            curr = curr.next
        '''
        od.__iter__()等同于iter(od)
        按顺序遍历字典链表;
        例如:
        >>> od = OrderedDict({'k1':'v1','k2':'v2','k3':'v3'})
        >>> od
        OrderedDict([('k1', 'v1'), ('k2', 'v2'), ('k3', 'v3')])
        >>> od.__iter__()
        <odict_iterator object at 0x0000027FF1D11F10>
        >>> nod = od.__iter__()
        >>> type(nod)
        <class 'odict_iterator'>
        >>> iter(od)
        <odict_iterator object at 0x0000027FF1D11F10>
        '''
    def __reversed__(self):
        'od.__reversed__() <==> reversed(od)'
        # Traverse the linked list in reverse order.
        root = self.__root
        curr = root.prev
        while curr is not root:
            yield curr.key
            curr = curr.prev
        '''
        od.__reversed__()等同于reversed(od)
        以相反的顺序遍历字典链表,及返回一个反向迭代器;       
        '''
    def clear(self):
        'od.clear() -> None.  Remove all items from od.'
        root = self.__root
        root.prev = root.next = root
        self.__map.clear()
        dict.clear(self)
        '''
        删除所有项目;
        例如:
        >>> od = OrderedDict({'k1':'v1','k2':'v2','k3':'v3'})
        >>> od
        OrderedDict([('k1', 'v1'), ('k2', 'v2'), ('k3', 'v3')])
        >>> od.clear()
        >>> od
        OrderedDict()
        '''
    def popitem(self, last=True):
        '''od.popitem() -> (k, v), return and remove a (key, value) pair.
        Pairs are returned in LIFO order if last is true or FIFO order if false.
        '''
        if not self:
            raise KeyError('dictionary is empty')
        root = self.__root
        if last:
            link = root.prev
            link_prev = link.prev
            link_prev.next = root
            root.prev = link_prev
        else:
            link = root.next
            link_next = link.next
            root.next = link_next
            link_next.prev = root
        key = link.key
        del self.__map[key]
        value = dict.pop(self, key)
        return key, value
        '''
        按照先进先出删除key,value,并返回删除key和value;
        如果参数last默认值True,表示以LIFO顺序(先进先出)进行删除和返回;
        如果last为Flase,则以FIFO顺序(后进先出)进行删除和返回;
        也可直接指定key的索引值进行删除;
        例如:
        >>> od = OrderedDict({'k1':'v1','k2':'v2','k3':'v3','k4':'v4'})
        >>> od.popitem()
        ('k4', 'v4')
        >>> od
        OrderedDict([('k1', 'v1'), ('k2', 'v2'), ('k3', 'v3')])
        >>> od.popitem(last = False)
        ('k1', 'v1')
        >>> od
        OrderedDict([('k2', 'v2'), ('k3', 'v3')])
        >>> od.popitem(0)
        ('k2', 'v2')
        >>> od
        OrderedDict([('k3', 'v3')])
        '''
    def move_to_end(self, key, last=True):
        '''Move an existing element to the end (or beginning if last==False).
        Raises KeyError if the element does not exist.
        When last=True, acts like a fast version of self[key]=self.pop(key).
        '''
        link = self.__map[key]
        link_prev = link.prev
        link_next = link.next
        link_prev.next = link_next
        link_next.prev = link_prev
        root = self.__root
        if last:
            last = root.prev
            link.prev = last
            link.next = root
            last.next = root.prev = link
        else:
            first = root.next
            link.prev = root
            link.next = first
            root.next = first.prev = link
        '''
        移动现有元素,等同于od[key] = od.pop(key); (Python3新增)
        当last参数为True(默认值)时,将现有元素移动到结尾;
        如果last参数为False时,则将现有元素移动开头;
        如果元素不存在,则引发KetError;
        例如:
        >>> od = OrderedDict({'k1':'v1','k2':'v2','k3':'v3','k4':'v4'})
        >>> od.move_to_end('k1')
        >>> od
        OrderedDict([('k2', 'v2'), ('k3', 'v3'), ('k4', 'v4'), ('k1', 'v1')])
        >>> od.move_to_end('k4',last = False)
        >>> od
        OrderedDict([('k4', 'v4'), ('k2', 'v2'), ('k3', 'v3'), ('k1', 'v1')])
        >>> od['k2'] = od.pop('k2')
        >>> od
        OrderedDict([('k4', 'v4'), ('k3', 'v3'), ('k1', 'v1'), ('k2', 'v2')])
        '''
    def __sizeof__(self):
        sizeof = _sys.getsizeof
        n = len(self) + 1                       # number of links including root
        size = sizeof(self.__dict__)            # instance dictionary
        size += sizeof(self.__map) * 2          # internal dict and inherited dict
        size += sizeof(self.__hardroot) * n     # link objects
        size += sizeof(self.__root) * n         # proxy objects
        return size
        '''
        返回内存中的大小(以字节为单位); (Python3新增)
        '''
    update = __update = MutableMapping.update
    def keys(self):
        "D.keys() -> a set-like object providing a view on D's keys"
        return _OrderedDictKeysView(self)
        '''
        返回一个包含key的类似集合的对象;
        例如:
        >>> od = OrderedDict({'k1':'v1','k2':'v2','k3':'v3','k4':'v4'})
        >>> od.keys()
        odict_keys(['k1', 'k2', 'k3', 'k4'])
        '''
    def items(self):
        "D.items() -> a set-like object providing a view on D's items"
        return _OrderedDictItemsView(self)
        '''
        返回一个包含所有(key, value)类似集合的对象;
        例如:
        >>> od = OrderedDict({'k1':'v1','k2':'v2','k3':'v3','k4':'v4'})
        >>> od.items()
        odict_items([('k1', 'v1'), ('k2', 'v2'), ('k3', 'v3'), ('k4', 'v4')])
        '''
    def values(self):
        "D.values() -> an object providing a view on D's values"
        return _OrderedDictValuesView(self)
        '''
        返回一个包含value的类似集合的对象;
        例如:
        >>> od = OrderedDict({'k1':'v1','k2':'v2','k3':'v3','k4':'v4'})
        >>> od.values()
        odict_values(['v1', 'v2', 'v3', 'v4'])
        '''
    def iterkeys(self):
        'od.iterkeys() -> an iterator over the keys in od'
        return iter(self)
        '''
        key可迭代; (Python2特有,Python3已删除)
        例如:
        >>> od = OrderedDict({'k1':'v1','k2':'v2','k3':'v3','k4':'v4'})
        >>> od.iterkeys()
        <generator object __iter__ at 0x02E653A0>
        >>> nod = od.iterkeys()
        >>> type(nod)
        <type 'generator'>
        >>> nod.next()
        'k3'
        >>> nod.next()
        'k2'
        >>> nod.next()
        'k1'
        '''
    def itervalues(self):
        'od.itervalues -> an iterator over the values in od'
        for k in self:
            yield self[k]
        '''
        value可迭代; (Python2特有,Python3已删除)
        例如:
        >>> od = OrderedDict({'k1':'v1','k2':'v2','k3':'v3','k4':'v4'})
        >>>od.itervalues()
        <generator object itervalues at 0x02E654E0>
        >>> nod = od.itervalues()
        >>> type(nod)
        <type 'generator'>
        >>> nod.next()
        'v3'
        >>> nod.next()
        'v2'
        >>> nod.next()
        'v1'
        '''
    def iteritems(self):
        'od.iteritems -> an iterator over the (key, value) pairs in od'
        for k in self:
            yield (k, self[k])
        '''
        key, value可迭代; (Python2特有,Python3已删除)
        例如:
        >>> od = OrderedDict({'k1':'v1','k2':'v2','k3':'v3','k4':'v4'})
        >>> od.iteritems()
        <generator object iteritems at 0x02E654E0>
        >>> nod = od.iteritems()
        >>> nod.next()
        ('k3', 'v3')
        >>> nod.next()
        ('k2', 'v2')
        >>> nod.next()
        ('k1', 'v1')
        '''
    __ne__ = MutableMapping.__ne__
    __marker = object()
    def pop(self, key, default=__marker):
        '''od.pop(k[,d]) -> v, remove specified key and return the corresponding
        value.  If key is not found, d is returned if given, otherwise KeyError
        is raised.
        '''
        if key in self:
            result = self[key]
            del self[key]
            return result
        if default is self.__marker:
            raise KeyError(key)
        return default
        '''
        删除指定的键并返回相应的值,如果设置了d参数,并未找到key时,则返回d参数,否则返回KeyError;
        例如:
        >>> od = OrderedDict({'k1':'v1','k2':'v2','k3':'v3'})
        >>> od.pop('k1')
        'v1'
        >>> od
        OrderedDict([('k2', 'v2'), ('k3', 'v3')])
        >>> od.pop('k4')
        Traceback (most recent call last):
          File "<stdin>", line 1, in <module>
        KeyError: 'k4'
        >>> od.pop('k4','k4_no_found')
        'k4_no_found'
        '''
    def setdefault(self, key, default=None):
        'od.setdefault(k[,d]) -> od.get(k,d), also set od[k]=d if k not in od'
        if key in self:
            return self[key]
        self[key] = default
        return default
        '''
        设置key键,如果已存在key键,则不改变key键,并返回原有key键的value值,如果不存在Key键,由为它赋值;
        例如:
        >>> od = OrderedDict({'k1':'v1','k2':'v2','k3':'v3'})
        >>> od.setdefault('k3','v4')
        'v3'
        >>> od
        OrderedDict([('k1', 'v1'), ('k2', 'v2'), ('k3', 'v3')])
        >>> od.setdefault('k4','v4')
        'v4'
        >>> od
        OrderedDict([('k1', 'v1'), ('k2', 'v2'), ('k3', 'v3'), ('k4', 'v4')])
        '''
    @_recursive_repr()
    def __repr__(self):
        'od.__repr__() <==> repr(od)'
        if not self:
            return '%s()' % (self.__class__.__name__,)
        return '%s(%r)' % (self.__class__.__name__, list(self.items()))
        '''
        od.__repr__()等同于repr(od)
        转化为解释器可读取的形式,即转换为字符串格式;
        例如:
        >>> od = OrderedDict({'k1':'v1','k2':'v2','k3':'v3'})
        >>> nod = od.__repr__()
        >>> nod
        "OrderedDict([('k1', 'v1'), ('k2', 'v2'), ('k3', 'v3')])"
        >>> type(nod)
        <class 'str'>
        '''
    def __reduce__(self):
        'Return state information for pickling'
        inst_dict = vars(self).copy()
        for k in vars(OrderedDict()):
            inst_dict.pop(k, None)
        return self.__class__, (), inst_dict or None, None, iter(self.items())
        '''
        返回pickling状态的信息;
        例如:
        od = OrderedDict({'k1':'v1','k2':'v2','k3':'v3'})
        >>> nod = od.__reduce__()
        >>> nod
        (<class 'collections.OrderedDict'>, (), None, None, <odict_iterator object at 0x0000027FF1D11F10>)
        >>> type(nod)
        <class 'tuple'>
        '''
    def copy(self):
        'od.copy() -> a shallow copy of od'
        return self.__class__(self)
        '''
        浅拷贝;
        '''
    @classmethod
    def fromkeys(cls, iterable, value=None):
        '''OD.fromkeys(S[, v]) -> New ordered dictionary with keys from S.
        If not specified, the value defaults to None.
        '''
        self = cls()
        for key in iterable:
            self[key] = value
        return self
        '''
        获取S的keys,并生成新字典 如果v参数未指定,则值默认为None;
        例如:
        >>> od1 = OrderedDict({'k1':'v1','k2':'v2','k3':'v3'})
        >>> od2 = OrderedDict({'k4':'v4','k5':'v5','k6':'v6'})
        >>> od2.fromkeys(od1,'v')
        OrderedDict([('k1', 'v'), ('k2', 'v'), ('k3', 'v')])
        >>> od2
        OrderedDict([('k4', 'v4'), ('k5', 'v5'), ('k6', 'v6')])
        >>> od2.fromkeys(od1)
        OrderedDict([('k1', None), ('k2', None), ('k3', None)])
        '''
    def __eq__(self, other):
        '''od.__eq__(y) <==> od==y.  Comparison to another OD is order-sensitive
        while comparison to a regular mapping is order-insensitive.
        '''
        if isinstance(other, OrderedDict):
            return dict.__eq__(self, other) and all(map(_eq, self, other))
        return dict.__eq__(self, other)
        '''
        od.__eq__(y) 等同于 od==y        
        有序字典等同于判断,即判断od是否等于y,返回布尔值;
        例如:
        >>> od1 = OrderedDict({'k1':'v1','k2':'v2','k3':'v3'})
        >>> od2 = OrderedDict({'k4':'v4','k5':'v5','k6':'v6'})
        >>> od1.__eq__(od2)
        False
        >>> od2 = OrderedDict({'k1':'v1','k2':'v2','k3':'v3'})
        >>> od1.__eq__(od2)
        True
        >>> od1 == od2
        True
        '''
    def __ne__(self, other):
        'od.__ne__(y) <==> od!=y'
        return not self == other
        '''
        有序字典等不同于判断,即判断od是否不等于y,返回布尔值;
        例如:
        >>> od1 = OrderedDict({'k1':'v1','k2':'v2','k3':'v3'})
        >>> od2 = OrderedDict({'k4':'v4','k5':'v5','k6':'v6'})
        >>> od1.__ne__(od2)
        True
        >>> od1 != od2
        True
        >>> od2 = OrderedDict({'k1':'v1','k2':'v2','k3':'v3'})
        >>> od1.__ne__(od2)
        False
        '''
    # -- the following methods support python 3.x style dictionary views --
    def viewkeys(self):
        "od.viewkeys() -> a set-like object providing a view on od's keys"
        return KeysView(self)
        '''
        返回一个包含key的类似集合的对象; (Python2特有,Python3已删除)
        '''
    def viewvalues(self):
        "od.viewvalues() -> an object providing a view on od's values"
        return ValuesView(self)
        '''
        返回一个包含value的类似集合的对象; (Python2特有,Python3已删除)
        '''
    def viewitems(self):
        "od.viewitems() -> a set-like object providing a view on od's items"
        return ItemsView(self)
        '''
        返回一个包含所有(key, value)类似集合的对象; (Python2特有,Python3已删除)
        '''

3、默认字典(defaultdict)函数说明

defaultdict是对字典的类型的补充,他默认给字典的值设置了一个类型;

class defaultdict(dict):
    """
    defaultdict(default_factory[, ...]) --> dict with default factory
    
    The default factory is called without arguments to produce
    a new value when a key is not present, in __getitem__ only.
    A defaultdict compares equal to a dict with the same items.
    All remaining arguments are treated the same as if they were
    passed to the dict constructor, including keyword arguments.
    """
    '''
    当不存在键时,仅在__getitem__调用中,默认字典可以不带参数以生成新值;
    默认字典与普通字典基本相同;
    所有参数都都与dict字典相同(包括关键字参数),执行时均被传递给dict的构造函数;
    '''
    def copy(self): # real signature unknown; restored from __doc__
        """ D.copy() -> a shallow copy of D. """
        pass
        '''
        浅拷贝;
        例如:
        >>> from collections import defaultdict
        >>> dd1 = defaultdict(list)
        >>> dd1['k1']
        []
        >>> dd1
        defaultdict(<class 'list'>, {'k1': []})
        >>> dd2 = dd1.copy()
        >>> dd2
        defaultdict(<class 'list'>, {'k1': []})
        '''
    def __copy__(self, *args, **kwargs): # real signature unknown
        """ D.copy() -> a shallow copy of D. """
        '''
        浅拷贝,等同于D.copy();
        '''
        pass
    def __getattribute__(self, name): # real signature unknown; restored from __doc__
        """ x.__getattribute__('name') <==> x.name """
        pass
    def __init__(self, default_factory=None, **kwargs): # known case of _collections.defaultdict.__init__
        """
        defaultdict(default_factory[, ...]) --> dict with default factory
        
        The default factory is called without arguments to produce
        a new value when a key is not present, in __getitem__ only.
        A defaultdict compares equal to a dict with the same items.
        All remaining arguments are treated the same as if they were
        passed to the dict constructor, including keyword arguments.
        
        # (copied from class doc)
        """
        pass
        '''
        构造方法;
        '''
    def __missing__(self, key): # real signature unknown; restored from __doc__
        """
        __missing__(key) # Called by __getitem__ for missing key; pseudo-code:
          if self.default_factory is None: raise KeyError((key,))
          self[key] = value = self.default_factory()
          return value
        """
        pass
    def __reduce__(self, *args, **kwargs): # real signature unknown
        """ Return state information for pickling. """
        pass
        '''
        返回pickling状态的信息;
        '''
    def __repr__(self): # real signature unknown; restored from __doc__
        """ x.__repr__() <==> repr(x) """
        pass
        '''
        x.__repr__()等同于repr(x)
        转化为解释器可读取的形式,即转换为字符串格式;
        '''
    default_factory = property(lambda self: object(), lambda self, v: None, lambda self: None)  # default

4、可命名元组(namedtuple)函数说明

根据nametuple可以创建一个包含tuple所有功能以及其他功能的类型。

################################################################################
### namedtuple
################################################################################
_class_template = """\
from builtins import property as _property, tuple as _tuple
from operator import itemgetter as _itemgetter
from collections import OrderedDict
class {typename}(tuple):
    '{typename}({arg_list})'
    __slots__ = ()
    _fields = {field_names!r}
    def __new__(_cls, {arg_list}):
        'Create new instance of {typename}({arg_list})'
        return _tuple.__new__(_cls, ({arg_list}))
    @classmethod
    def _make(cls, iterable, new=tuple.__new__, len=len):
        'Make a new {typename} object from a sequence or iterable'
        result = new(cls, iterable)
        if len(result) != {num_fields:d}:
            raise TypeError('Expected {num_fields:d} arguments, got %d' % len(result))
        return result
    def _replace(_self, **kwds):
        'Return a new {typename} object replacing specified fields with new values'
        result = _self._make(map(kwds.pop, {field_names!r}, _self))
        if kwds:
            raise ValueError('Got unexpected field names: %r' % list(kwds))
        return result
    def __repr__(self):
        'Return a nicely formatted representation string'
        return self.__class__.__name__ + '({repr_fmt})' % self
    def _asdict(self):
        'Return a new OrderedDict which maps field names to their values.'
        return OrderedDict(zip(self._fields, self))
    def __getnewargs__(self):
        'Return self as a plain tuple.  Used by copy and pickle.'
        return tuple(self)
{field_defs}
"""
_repr_template = '{name}=%r'
_field_template = '''\
    {name} = _property(_itemgetter({index:d}), doc='Alias for field number {index:d}')
'''
def namedtuple(typename, field_names, *, verbose=False, rename=False, module=None):
    """Returns a new subclass of tuple with named fields.
    >>> Point = namedtuple('Point', ['x', 'y'])
    >>> Point.__doc__                   # docstring for the new class
    'Point(x, y)'
    >>> p = Point(11, y=22)             # instantiate with positional args or keywords
    >>> p[0] + p[1]                     # indexable like a plain tuple
    33
    >>> x, y = p                        # unpack like a regular tuple
    >>> x, y
    (11, 22)
    >>> p.x + p.y                       # fields also accessible by name
    33
    >>> d = p._asdict()                 # convert to a dictionary
    >>> d['x']
    11
    >>> Point(**d)                      # convert from a dictionary
    Point(x=11, y=22)
    >>> p._replace(x=100)               # _replace() is like str.replace() but targets named fields
    Point(x=100, y=22)
    """
    '''
    返回具有命名字段的元组的新子类;
    '''
    # Validate the field names.  At the user's option, either generate an error
    # message or automatically replace the field name with a valid name.
    if isinstance(field_names, str):
        field_names = field_names.replace(',', ' ').split()
    field_names = list(map(str, field_names))
    typename = str(typename)
    if rename:
        seen = set()
        for index, name in enumerate(field_names):
            if (not name.isidentifier()
                or _iskeyword(name)
                or name.startswith('_')
                or name in seen):
                field_names[index] = '_%d' % index
            seen.add(name)
    for name in [typename] + field_names:
        if type(name) is not str:
            raise TypeError('Type names and field names must be strings')
        if not name.isidentifier():
            raise ValueError('Type names and field names must be valid '
                             'identifiers: %r' % name)
        if _iskeyword(name):
            raise ValueError('Type names and field names cannot be a '
                             'keyword: %r' % name)
    seen = set()
    for name in field_names:
        if name.startswith('_') and not rename:
            raise ValueError('Field names cannot start with an underscore: '
                             '%r' % name)
        if name in seen:
            raise ValueError('Encountered duplicate field name: %r' % name)
        seen.add(name)
    # Fill-in the class template
    class_definition = _class_template.format(
        typename = typename,
        field_names = tuple(field_names),
        num_fields = len(field_names),
        arg_list = repr(tuple(field_names)).replace("'", "")[1:-1],
        repr_fmt = ', '.join(_repr_template.format(name=name)
                             for name in field_names),
        field_defs = '\n'.join(_field_template.format(index=index, name=name)
                               for index, name in enumerate(field_names))
    )
    # Execute the template string in a temporary namespace and support
    # tracing utilities by setting a value for frame.f_globals['__name__']
    namespace = dict(__name__='namedtuple_%s' % typename)
    exec(class_definition, namespace)
    result = namespace[typename]
    result._source = class_definition
    if verbose:
        print(result._source)
    # For pickling to work, the __module__ variable needs to be set to the frame
    # where the named tuple is created.  Bypass this step in environments where
    # sys._getframe is not defined (Jython for example) or sys._getframe is not
    # defined for arguments greater than 0 (IronPython), or where the user has
    # specified a particular module.
    if module is None:
        try:
            module = _sys._getframe(1).f_globals.get('__name__', '__main__')
        except (AttributeError, ValueError):
            pass
    if module is not None:
        result.__module__ = module
    return result




免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python基本数据类型(三)

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python基本数据类型(三)

一、set的函数说明集合(set)是一个无序不重复元素的序列,基本功能是进行成员关系测试和删除重复元素,可以使用大括号({})或者 set()函数创建集合;注:创建一个空集合必须用set()而不是{ },因为{ }是用来创建一个空字典;在p
2023-01-31

python基本数据类型(三)-字符串拼

1.字符串拼接2.格式化输出3.神复制和浅复制1.字符串拼接例: a='hello', b='python',c='!' 将a,b,c中的字符串连成一句话。1.用+号a+b+c2.格式化字符串 %'%s %s %s' % (a,b,c)3.
2023-01-31

Python基本数据类型

Numbers (数字)1、数字数据类型用于存储数值。他们是不可改变的数据类型,这意味着改变数字数据类型会分配一个新的对象。2、Python支持四种不同的数字类型:int(有符号整型)long(长整型[也可以代表八进制和十六进制])floa
2023-01-31

Python 基本数据类型 (二) -

str.expandtabs([tabsize]): str类型的expandtabs函数,有一个可选参数tabsize(制表符大小)详细来说,expandtabs的意思就是,将字符串中的制表符\t,全部用空格来替换。至于用多少个空格,需要
2023-01-30

Python--4 基本数据类型

4.1 字符串  字符串str是在Python编写程序过程中,最常见的一种基本数据类型。字符串是许多单个子串组成的序列,其主要是用来表示文本。字符串是不可变数据类型,也就是说你要改变原字符串内的元素,只能是新建另一个字符串。  1、创建py
2023-01-30

Python基本数据类型(四)

5、双向队列(deque)函数说明一个线程安全的双向队列,可进可出,可以从两端添加和删除元素;class deque(object):    """    deque([iterable[, maxlen]]) --> deque obje
2023-01-31

第三天-基本数据类型 int bool

# python基础数据类型# 1. int 整数# 2.str 字符串.不会用字符串保存大量的数据# 3.bool 布尔值. True, False# 4.list 列表(重点) 存放大量的数据# 5.dict 字典 key: value
2023-01-30

python的基本数据类型(一)

一.运算符逻辑运算and:两边都真则真or:有真则真not:非假是真顺序:()>==>not==>and>=or二.while.. elsewhile 条件: 代码块else: 当条件为假的时候执行三.主要内容1.编码 1
2023-01-30

python基本数据类型(二)-pyth

序列类型的自带方法1.列表的常用方法2.元祖的常用方法3.字符串的常用方法1.列表常用的方法L.append(obj) #在列表末尾添加新的对象L.clear() #清空列表L.copy()
2023-01-31

Python基本数据类型__列表

6、列表[list]在Python中列表用[]来表示,中间的元素可以是任何类型,用逗号分隔。列表是可变类型。列表的常用操作:在列表中我觉得比较重要的就属增删改查了,还有一些类似于字符串的操作;、定义列表:qq = [1,2,3,4,'12'
2023-01-31

python基本数据类型(一)-pyth

1.python课程简介2.数据类型3.序列类型1.python简介1.python是一门编程语言,是一门完全面向对象的编程语言2.如果对语言进行分类,那么python是一门强类型,动态的语言(若类型:比如int可以编程float,pyth
2023-01-31

基本数据类型

Python支持多种数据类型在计算机内部,可把任何数据都看成一个对象,而变量就是在程序中用来指向这些数据对象的,对变量赋值就是把数据和变量给关联起来 整数  Python可以处理任意大小的整数,当然包括负整数,在程序中的表示方法和数学上的写
2023-01-31

Python基本数据类型有什么

这篇文章主要讲解了“Python基本数据类型有什么”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Python基本数据类型有什么”吧!  1.数值  int  flaot  2.字符串Stri
2023-06-02

python基本数据类型之字典

字典的定义与特性字典是Python语言中唯一的映射类型。定义:{key1:value1,key2:value2}1、键与值用冒号“:”分开;2、项与项用逗号“,”分开;特性:1.key-value结构2.key必须可hash、且必须为不可变
2023-01-31

Python的基本数据类型之Number

Python下载地址: https://www.python.org/downloads/部分参考资料:廖雪峰的网站Python与Java在一定程度上比较相似,都是面向对象型的语言。首先搭配好Python的开发环境,网上相关教程很多,本文具
2023-01-31

python基本数据类型的介绍

int(整型)在32位机器上,整数的位数为32位,取值范围为-2**31~2**31-1,即-2147483648~2147483647在64位系统上,整数的位数为64位,取值范围为-2**63~2**63-1,即-922337203685
2023-01-31

python变量和基本数据类型

一、变量1、声明变量:#!/usr/bin/env python# -*- coding: utf-8 -*-name = "tiger"上述代码声明了一个变量,变量名为: name,变量name的值为:"tiger"变量的作用:其代指内存
2023-01-31

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录