我的编程空间,编程开发者的网络收藏夹
学习永远不晚

OpenCV半小时掌握基本操作之图像处理

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

OpenCV半小时掌握基本操作之图像处理

【OpenCV】⚠️高手勿入! 半小时学会基本操作⚠️图像处理

概述

OpenCV 是一个跨平台的计算机视觉库, 支持多语言, 功能强大. 今天小白就带大家一起携手走进 OpenCV 的世界.

在这里插入图片描述

图像处理

图像处理是非常基础和关键的, 今天就带大家来一起了解一下图像处理.

在这里插入图片描述

转换图像

cv.cvtColor可以帮助我们转换图片通道.

格式:


cv2.cvtColor(class="lazy" data-src, code[, dst[, dstCn]])

参数:

  • class="lazy" data-src: 需要转换的图片
  • code: 颜色空间转换码
  • dst: 输出图像大小深度相同, 可选参数
  • desCn: 输出图像的颜色通道, 可选参数

转换成灰度图

RGB 到灰度图转换公式:


Y' = 0.299 R + 0.587 G + 0.114 B

例子:


# 读取数据
img = cv2.imread("cat.jpg")

# 转换成灰度图
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 输出维度
print(img_gray.shape)  # (554, 640)

# 展示图像
cv2.imshow("img_gray", img_gray)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

在这里插入图片描述

HSV

HSV (Hue, Saturation, Value) 是根据颜色的直观特性由 A.R. Smith 在 1978 年创建的一种颜色空间.

例子:


# 转换成hsv
img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)

# 输出维度
print(img_hsv.shape)  # (554, 640, 3)

# 展示图像
cv2.imshow("img_hsv", img_hsv)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

在这里插入图片描述

YUV

YUV 是一种颜色编码的方法, 主要用在视频, 图形处理流水线中.

例子:


# 读取数据
img = cv2.imread("cat.jpg")

# 转换成hsv
img_yuv = cv2.cvtColor(img, cv2.COLOR_BGR2YUV)

# 输出维度
print(img_yuv.shape)  # (554, 640, 3)

# 展示图像
cv2.imshow("img_yuv", img_yuv)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

在这里插入图片描述

二值化操作

格式:


ret, dst = cv2.threshold(class="lazy" data-src, thresh, maxval, type)

参数:

  • class="lazy" data-src: 需要转换的图
  • thresh: 阈值
  • maxval: 超过阈值所赋的值
  • type: 二值化操作类型

返回值:

  • ret: 输入的阈值
  • dst: 处理好的图片

原图

在这里插入图片描述

Binary

大于阈值的设为 255, 低于或等于阈值的为 0.

例子:


# 读取数据
img_gray = cv2.imread("cat_gray.jpg")

# 二值化
ret, thresh1 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY)

# 图片展示
cv2.imshow("thresh1", thresh1)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

在这里插入图片描述

Binary Inverse

与 Binary 相反.

例子:


# 读取数据
img_gray = cv2.imread("cat_gray.jpg")

# 二值化
ret, thresh2 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY_INV)

# 图片展示
cv2.imshow("thresh2", thresh2)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

在这里插入图片描述

Trunc

大于阈值的设为 255, 低于或等于阈值的不变.

例子:


# 读取数据
img_gray = cv2.imread("cat_gray.jpg")

# 截断
ret, thresh3 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TRUNC)

# 图片展示
cv2.imshow("thresh3", thresh3)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

在这里插入图片描述

Tozero

大于阈值部分不变, 否则设为 0.

代码:


# 读取数据
img_gray = cv2.imread("cat_gray.jpg")

# Tozero
ret, thresh4 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO)

# 图片展示
cv2.imshow("thresh4", thresh4)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

在这里插入图片描述

Tozero Inverse

与 Tozero 相反.

代码:


# 读取数据
img_gray = cv2.imread("cat_gray.jpg")

# Tozero
ret, thresh5 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO_INV)

# 图片展示
cv2.imshow("thresh5", thresh5)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

在这里插入图片描述

到此这篇关于OpenCV半小时掌握基本操作之图像处理的文章就介绍到这了,更多相关OpenCV图像处理内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

OpenCV半小时掌握基本操作之图像处理

下载Word文档到电脑,方便收藏和打印~

下载Word文档

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录