我的编程空间,编程开发者的网络收藏夹
学习永远不晚

python架构PyNeuraLogic源码分析

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

python架构PyNeuraLogic源码分析

这篇“python架构PyNeuraLogic源码分析”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“python架构PyNeuraLogic源码分析”文章吧。

引言

展示神经符号编程的力量

python架构PyNeuraLogic源码分析

1. 简介

在过去的几年里,我们看到了基于 Transformer 的模型的兴起,并在自然语言处理或计算机视觉等许多领域取得了成功的应用。在本文中,我们将探索一种简洁、可解释和可扩展的方式来表达深度学习模型,特别是 Transformer,作为混合架构,即通过将深度学习与符号人工智能结合起来。为此,我们将在名为 PyNeuraLogic 的 Python 神经符号框架中实现模型。

将符号表示与深度学习相结合,填补了当前深度学习模型的空白,例如开箱即用的可解释性或缺少推理技术。也许,增加参数的数量并不是实现这些预期结果的最合理方法,就像增加相机百万像素的数量不一定会产生更好的照片一样。

python架构PyNeuraLogic源码分析

PyNeuraLogic 框架基于逻辑编程——逻辑程序包含可微分的参数。该框架非常适合较小的结构化数据(例如分子)和复杂模型(例如 Transformers 和图形神经网络)。另一方面,PyNeuraLogic 不是非关系型和大型张量数据的最佳选择。

该框架的关键组成部分是一个可微分的逻辑程序,我们称之为模板。模板由以抽象方式定义神经网络结构的逻辑规则组成——我们可以将模板视为模型架构的蓝图。然后将模板应用于每个输入数据实例,以生成(通过基础和神经化)输入样本独有的神经网络。这个过程与其他具有预定义架构的框架完全不同,这些框架无法针对不同的输入样本进行自我调整。

2. Symbolic Transformers

python架构PyNeuraLogic源码分析

我们通常倾向于将深度学习模型实现为对批处理成一个大张量的输入令牌的张量操作。这是有道理的,因为深度学习框架和硬件(例如 GPU)通常针对处理更大的张量而不是形状和大小不同的多个张量进行了优化。 Transformers 也不例外,通常将单个标记向量表示批处理到一个大矩阵中,并将模型表示为对此类矩阵的操作。然而,这样的实现隐藏了各个输入标记如何相互关联,这可以在 Transformer 的注意力机制中得到证明。

3. Attention 机制

注意力机制构成了所有 Transformer 模型的核心。具体来说,它的经典版本使用了所谓的多头缩放点积注意力。让我们用一个头(为了清楚起见)将缩放的点积注意力分解成一个简单的逻辑程序。

python架构PyNeuraLogic源码分析

注意力的目的是决定网络应该关注输入的哪些部分。注意通过计算值 V 的加权和来实现,其中权重表示输入键 K 和查询 Q 的兼容性。在这个特定版本中,权重由查询 Q 和查询的点积的 softmax 函数计算键 K,除以输入特征向量维数 d_k 的平方根。

(R.weights(V.I, V.J) <= (R.d_k, R.k(V.J).T, R.q(V.I))) | [F.product, F.softmax_agg(agg_terms=[V.J])],(R.attention(V.I) <= (R.weights(V.I, V.J), R.v(V.J)) | [F.product]

在 PyNeuraLogic 中,我们可以通过上述逻辑规则充分捕捉注意力机制。第一条规则表示权重的计算&mdash;&mdash;它计算维度的平方根倒数与转置的第 j 个键向量和第 i 个查询向量的乘积。然后我们用 softmax 聚合给定 i 和所有可能的 j 的所有结果。

然后,第二条规则计算该权重向量与相应的第 j 个值向量之间的乘积,并对每个第 i 个标记的不同 j 的结果求和。

4. Attention Masking

在训练和评估期间,我们通常会限制输入令牌可以参与的内容。例如,我们想限制标记向前看和关注即将到来的单词。流行的框架,例如 PyTorch,通过屏蔽实现这一点,即将缩放的点积结果的元素子集设置为某个非常低的负数。这些数字强制 softmax 函数将零指定为相应标记对的权重。

(R.weights(V.I, V.J) <= (    R.d_k, R.k(V.J).T, R.q(V.I), R.special.leq(V.J, V.I))) | [F.product, F.softmax_agg(agg_terms=[V.J])],

使用我们的符号表示,我们可以通过简单地添加一个身体关系作为约束来实现这一点。在计算权重时,我们限制第 j 个指标小于或等于第 i 个指标。与掩码相反,我们只计算所需的缩放点积。

python架构PyNeuraLogic源码分析

5. 非标准 Attention

当然,象征性的“掩蔽”可以是完全任意的。我们大多数人都听说过基于稀疏变换器的 GPT-3⁴(或其应用程序,例如 ChatGPT)。⁵ 稀疏变换器的注意力(跨步版本)有两种类型的注意力头:

  • 一个只关注前 n 个标记 (0 &le; i &minus; j &le; n)

  • 一个只关注每第 n 个前一个标记 ((i &minus; j) % n = 0)

两种类型的头的实现都只需要微小的改变(例如,对于 n = 5)。

(R.weights(V.I, V.J) <= (    R.d_k, R.k(V.J).T, R.q(V.I),    R.special.leq(V.D, 5), R.special.sub(V.I, V.J, V.D),)) | [F.product, F.softmax_agg(agg_terms=[V.J])],
(R.weights(V.I, V.J) <= (    R.d_k, R.k(V.J).T, R.q(V.I),    R.special.mod(V.D, 5, 0), R.special.sub(V.I, V.J, V.D),)) | [F.product, F.softmax_agg(agg_terms=[V.J])],

python架构PyNeuraLogic源码分析

我们可以走得更远,将对类似图形(关系)输入的注意力进行概括,就像在关系注意力中一样。⁶ 这种类型的注意力在图形上运行,其中节点只关注它们的邻居(由边连接的节点)。查询 Q、键 K 和值 V 是边嵌入与节点向量嵌入相加的结果。

(R.weights(V.I, V.J) <= (R.d_k, R.k(V.I, V.J).T, R.q(V.I, V.J))) | [F.product, F.softmax_agg(agg_terms=[V.J])],(R.attention(V.I) <= (R.weights(V.I, V.J), R.v(V.I, V.J)) | [F.product],R.q(V.I, V.J) <= (R.n(V.I)[W_qn], R.e(V.I, V.J)[W_qe]),R.k(V.I, V.J) <= (R.n(V.J)[W_kn], R.e(V.I, V.J)[W_ke]),R.v(V.I, V.J) <= (R.n(V.J)[W_vn], R.e(V.I, V.J)[W_ve]),

在我们的例子中,这种类型的注意力与之前显示的缩放点积注意力几乎相同。唯一的区别是添加了额外的术语来捕获边缘。将图作为注意力机制的输入似乎很自然,这并不奇怪,因为 Transformer 是一种图神经网络,作用于完全连接的图(未应用掩码时)。在传统的张量表示中,这并不是那么明显。

6. Encoder

现在,当我们展示 Attention 机制的实现时,构建整个 transformer 编码器块的缺失部分相对简单。

我们已经在 Relational Attention 中看到了如何实现嵌入。对于传统的 Transformer,嵌入将非常相似。我们将输入向量投影到三个嵌入向量中&mdash;&mdash;键、查询和值。

R.q(V.I) <= R.input(V.I)[W_q],R.k(V.I) <= R.input(V.I)[W_k],R.v(V.I) <= R.input(V.I)[W_v],

查询嵌入通过跳过连接与注意力的输出相加。然后将生成的向量归一化并传递到多层感知器 (MLP)。

(R.norm1(V.I) <= (R.attention(V.I), R.q(V.I))) | [F.norm],

对于 MLP,我们将实现一个具有两个隐藏层的全连接神经网络,它可以优雅地表达为一个逻辑规则。

(R.mlp(V.I)[W_2] <= (R.norm(V.I)[W_1])) | [F.relu],

最后一个带有规范化的跳过连接与前一个相同。

(R.norm2(V.I) <= (R.mlp(V.I), R.norm1(V.I))) | [F.norm],

我们已经构建了构建 Transformer 编码器所需的所有部分。解码器使用相同的组件;因此,其实施将是类似的。让我们将所有块组合成一个可微分逻辑程序,该程序可以嵌入到 Python 脚本中并使用 PyNeuraLogic 编译到神经网络中。

R.q(V.I) <= R.input(V.I)[W_q],R.k(V.I) <= R.input(V.I)[W_k],R.v(V.I) <= R.input(V.I)[W_v],R.d_k[1 / math.sqrt(embed_dim)],(R.weights(V.I, V.J) <= (R.d_k, R.k(V.J).T, R.q(V.I))) | [F.product, F.softmax_agg(agg_terms=[V.J])],(R.attention(V.I) <= (R.weights(V.I, V.J), R.v(V.J)) | [F.product],(R.norm1(V.I) <= (R.attention(V.I), R.q(V.I))) | [F.norm],(R.mlp(V.I)[W_2] <= (R.norm(V.I)[W_1])) | [F.relu],(R.norm2(V.I) <= (R.mlp(V.I), R.norm1(V.I))) | [F.norm],

以上就是关于“python架构PyNeuraLogic源码分析”这篇文章的内容,相信大家都有了一定的了解,希望小编分享的内容对大家有帮助,若想了解更多相关的知识内容,请关注编程网行业资讯频道。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

python架构PyNeuraLogic源码分析

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

python架构PyNeuraLogic源码分析

这篇“python架构PyNeuraLogic源码分析”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“python架构PyNe
2023-07-05

详解python架构 PyNeuraLogic超越Transformers

这篇文章主要为大家介绍了python使用 PyNeuraLogic超越Transformers示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-03-22

iOS架构从MVC、MVP到MVVM源码分析

本篇内容主要讲解“iOS架构从MVC、MVP到MVVM源码分析”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“iOS架构从MVC、MVP到MVVM源码分析”吧!1.传统的MVC设计模式M: Mod
2023-07-05

React SSR架构Streaming Render与Selective Hydration源码分析

本文小编为大家详细介绍“React SSR架构Streaming Render与Selective Hydration源码分析”,内容详细,步骤清晰,细节处理妥当,希望这篇“React SSR架构Streaming Render与Selec
2023-07-05

Dubbo Service Mesh基础架构组件源码分析

这篇文章主要讲解了“Dubbo Service Mesh基础架构组件源码分析”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Dubbo Service Mesh基础架构组件源码分析”吧!其他基
2023-07-05

适合面向ChatGPT编程的架构源码分析

本篇内容介绍了“适合面向ChatGPT编程的架构源码分析”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!新的需求我们前面爬虫的需求呢,有些平台
2023-07-05

Java Log框架源码分析

这篇文章主要讲解了“Java Log框架源码分析”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Java Log框架源码分析”吧!Log4J、Log4J2和LogBack的历史故事使用过Log
2023-07-05

微前端架构ModuleFederationPlugin源码解析

这篇文章主要为大家介绍了微前端架构ModuleFederationPlugin源码解析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2022-11-13

Mybatis Plus框架源码分析

这篇文章主要介绍了Mybatis Plus框架源码分析的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇Mybatis Plus框架源码分析文章都会有所收获,下面我们一起来看看吧。基础设计BaseEntity对于数
2023-07-05

[Apache Atlas] Atlas 架构设计及源代码简单分析

Apache Atlas 架构设计及源代码分析, 以Hive建库为例,分析元数据采集的主体流程 Apache Atlas 架构图Atlas 支持多数据源接入:Hive、HBase、Storm等Type SystemTypeAtlas 中定义了一些元数据类
[Apache Atlas] Atlas 架构设计及源代码简单分析
2020-01-26

React SSR架构Stream Rendering与Suspense for Data Fetching源码分析

这篇“React SSR架构Stream Rendering与Suspense for Data Fetching源码分析”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完
2023-07-05

django源码分析 python ma

django是一个快速开发web应用的框架, 笔者也在django框架上开发不少web应用,闲来无事,就想探究一下django底层到底是如何实现的,本文记录了笔者对django源码的分析过程I believe to become a bet
2023-01-31

微前端框架qiankun源码分析

本文小编为大家详细介绍“微前端框架qiankun源码分析”,内容详细,步骤清晰,细节处理妥当,希望这篇“微前端框架qiankun源码分析”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。一、single-spa简介要
2023-07-05

Python中的jieba源码分析

本篇内容主要讲解“Python中的jieba源码分析”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Python中的jieba源码分析”吧!前言jieba分词是Python 里面几个比较流行的中文
2023-06-02

TC集群Seata1.6高可用架构源码解析

这篇文章主要为大家介绍了TC集群Seata1.6高可用架构源码解析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2022-12-26

Mysql 架构分析

1. mysql架构图1.1 各模块说明2 .Binlog 日志的使用3. Redo Log 和 Binlog的区别
Mysql 架构分析
2018-01-11

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录