我的编程空间,编程开发者的网络收藏夹
学习永远不晚

彻底弄懂Redis的LRU淘汰策略

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

彻底弄懂Redis的LRU淘汰策略

今天我们这篇文章的目的是要 搞懂LRU淘汰策略 以及 实现一个LRU算法 。

文章会结合图解循序渐进的讲解,跟着我的思路慢慢来就能看懂,我们开始吧。

文章导读

Redis的淘汰策略

为什么要有淘汰策略呢?

因为存储内存的空间是有限的,所以需要有淘汰的策略。

Redis的清理内存淘汰策略有哪些呢?

LRU算法简介

LRU是 Least Recently Used 的缩写,即 最近最少使用 ,是一种常见的页面置换算法。

我们手机的后台窗口(苹果手机双击Home的效果),他总是会把最近常用的窗口放在最前边,而最不常用的应用窗口,就排列在后边了,如果再加上只能放置N个应用窗口的限制,淘汰最不常用的最近最少用的应用窗口,那就是一个活生生的 LRU 。

实现思想推导

手机应用案例

从上边的示意图,我们可以分析出这么几个点:

  • 有序;
  • 如果应用开满3个了,要淘汰最不常用的应用,每次新访问应用,需要把数据插入队头(按照业务可以设定左右哪一边是队头);
  • O(1)复杂度是我们查找数据的追求,我们什么结构能够实现快速的O(1)查找呢?

推导图

通过上边的推导,我们就能得出, LRU 算法核心是 HashMap + DoubleLinkedList 。

思想搞明白了,我们接下来编码实现。

巧用LinkedHashMap

我们查看Java的 LinkedHashMap 使用说明。

LinkedHashMap使用说明

翻译:这种Map结构很适合构建LRU缓存。

继承 LinkedHashMap 实现 LRU 算法:

public class LRUDemo<K, V> extends LinkedHashMap<K, V> {
    private int capacity;
 
    public LRUDemo(int capacity) {
        super(capacity, 0.75F, true);
        this.capacity = capacity;
    }
 
    @Override
    protected boolean removeEldestEntry(Map.Entry<K, V> eldest) {
        return super.size() > capacity;
    }
 
    public static void main(String[] args) {
        LRUDemo lruDemo = new LRUDemo(3);
        lruDemo.put(1, "a");
        lruDemo.put(2, "b");
        lruDemo.put(3, "c");
        System.out.println(lruDemo.keySet());
 
        lruDemo.put(4, "d");
        lruDemo.put(5, "e");
        System.out.println(lruDemo.keySet());
    }
}

重点讲解:

构造方法: super(capacity, 0.75F, true) ,主要看第三个参数:

order参数

true -> access-order // false -> insertion-order 即按照访问时间排序,还是按照插入的时间来排序

// 构造方法改成false
super(capacity, 0.75F, false);
// 使用示例
public static void main(String[] args) {
  LRUDemo lruDemo = new LRUDemo(3);
  lruDemo.put(1, "a");
  lruDemo.put(2, "b");
  lruDemo.put(3, "c");
  System.out.println(lruDemo.keySet());
 
  lruDemo.put(1, "y");
  // 构造方法order=true,输出:[2,3,1],
  // 构造方法order=false,输出:[1,2,3],
  System.out.println(lruDemo.keySet());
}

removeEldestEntry 方法:什么时候移除最年长的元素。

通过上面,相信大家对 LRU 算法有所理解了,接下来我们不依赖JDK的 LinkedHashMap ,通过我们自己的理解,动手实现一个 LRU 算法,让我们的 LRU 算法刻入我们的大脑。

手写LRU

上边的推导图中可以看出,我们用 HashMap 来做具体的数据储存,但是我们还需要构造一个 DoubleLinkedList 对象(结构体)来储存 HashMap 的具体 key 顺序关系。

第一步:构建DoubleLinkedList对象

所以我们现在 第一步 ,就是构建一个 DoubleLinkedList 对象:

DoubleLinkedList示意图

我们可以从 HashMap 源码中找一些灵感,他们都是使用一个 Node 静态内部类来储存节点的值。

第二步:构建节点

通过上边的示意图,我们可以得知 节点 应该要储存的内容:

  • key
  • value
  • prev节点
  • next节点

翻译成代码:

class Node<K, V> {
    K key;
    V value;
    Node<K, V> prev;
    Node<K, V> next;
 
    public Node() {
        this.prev = this.next = null;
    }
 
    public Node(K key, V value) {
        this.key = key;
        this.value = value;
        this.prev = this.next = null;
    }
}

第三步:初始化DoubleLinkedList对象

DoubleLinkedList初始化示意图

还是通过上边的示意图,我们可以得知 DoubleLinkedList对象 应该要储存的内容:

  • 头节点
  • 尾节点

翻译成代码:

class DoubleLinkedList<K, V> {
    Node<K, V> head;
    Node<K, V> tail;
 
    // 构造方法
    public DoubleLinkedList(){
        head = new Node<>();
        tail = new Node<>();
        head.next = tail;
        tail.prev = head;
    }
}

从头添加节点

从头添加节点

翻译成代码:

public void addHead(Node<K, V> node) {
    node.next = head.next;
    node.prev = head;
    head.next.prev = node;
    head.next = node;
}

删除节点

删除节点

翻译成代码:

public void removeNode(Node<K, V> node) {
    node.next.prev = node.prev;
    node.prev.next = node.next;
    node.prev = null;
    node.next = null;
}

获取最后一个节点

public Node getLast() {
    return tail.prev;
}

第四步:LRU对象属性

cacheSize

private int cacheSize;

map

Map<Integer, Node<Integer, String>> map;

doubleLinkedList

DoubleLinkedList<Integer, String> doubleLinkedList;

第五步:LRU对象的方法

构造方法

public LRUDemo(int cacheSize) {
    this.cacheSize = cacheSize;
    map = new HashMap<>();
    doubleLinkedList = new DoubleLinkedList<>();
}

refreshNode刷新节点

public void refreshNode(Node node) {
    doubleLinkedList.removeNode(node);
    doubleLinkedList.addHead(node);
}

get节点

public String get(int key) {
    if (!map.containsKey(key)) {
        return "";
    }
 
    Node<Integer, String> node = map.get(key);
    refreshNode(node);
    return node.value;
}

put节点

public void put(int key, String value) {
    if (map.containsKey(key)) {
        Node<Integer, String> node = map.get(key);
        node.value = value;
        map.put(key, node);
 
        refreshNode(node);
    } else {
        if (map.size() == cacheSize) {
            Node lastNode = doubleLinkedList.getLast();
            map.remove(lastNode.key);
            doubleLinkedList.removeNode(lastNode);
        }
 
        Node<Integer, String> newNode = new Node<>(key, value);
        map.put(key, newNode);
        doubleLinkedList.addHead(newNode);
    }
}

第六步:测试

public static void main(String[] args) {
    LRUDemo lruDemo = new LRUDemo(3);
    lruDemo.put(1, "美团");
    lruDemo.put(2, "微信");
    lruDemo.put(3, "抖音");
    lruDemo.put(4, "微博");
    System.out.println(lruDemo.map.keySet());
 
    System.out.println(lruDemo.get(2));
}

总结

LRU 算法到这里就写完啦,完整的代码可以从阅读原文的链接地址获取。

到此这篇关于彻底弄懂Redis的LRU淘汰策略的文章就介绍到这了,更多相关Redis LRU淘汰策略内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

彻底弄懂Redis的LRU淘汰策略

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Redis中LRU淘汰策略是怎么工作的

在Redis中,LRU(Least Recently Used,最近最少使用)淘汰策略是一种缓存淘汰算法,它根据键的最近使用时间来决定哪些键应该被淘汰。具体工作原理如下:当一个新键被插入到缓存中时,该键的访问时间会被更新为当前时间。当缓存
Redis中LRU淘汰策略是怎么工作的
2024-05-07

Redis的过期策略和内存淘汰策略

文章前言提到内存管理,我们就需要考虑Redis的内存过期策略和内存淘汰机制。该文章便从这两方面入手,分享一些在Redis内存方面相关的基础知识。文章中使用的示例版本为Redis5.0版本。内存过期策略内存过期策略主要的作用就是,在缓存过期之后,能够及时的将失效
Redis的过期策略和内存淘汰策略
2020-12-25

redis的内存淘汰策略有哪些

redis 提供了多项内存淘汰策略,以控制在内存不足情况下数据的处理方式。这些策略包括:noeviction:禁用内存淘汰,确保数据不会丢失。volatile-lru:淘汰最久未使用的已设置过期时间的键。volatile-ttl:淘汰过期时
redis的内存淘汰策略有哪些
2024-04-19

Redis的数据淘汰策略有哪些

Redis的数据淘汰策略有以下几种:LRU(Least Recently Used):最近最少使用。该策略会淘汰最近最少被访问的数据。LFU(Least Frequently Used):最不经常使用。该策略会淘汰最不经常被访问的数据。TT
Redis的数据淘汰策略有哪些
2024-04-09

关于Redis的内存淘汰策略详解

目录一、什么是内存淘汰?二、Redis 内存上限三、Redis 内存淘汰策略四、内存淘汰的具体工作步骤五、LRU 算法及在 Redis 中的改进5.1 LRU 算法5.2 Redis 中的 LRU 算法六、LFU一、什么是内存淘汰?如果在
2023-05-19

浅谈redis的maxmemory设置以及淘汰策略

redis的maxmemory参数用于控制redis可使用的最大内存容量。如果超过maxmemory的值,就会动用淘汰策略来处理expaire字典中的键。 关于redis的淘汰策略: Redis提供了下面几种淘汰策略供用户选择,其中默认的策
2022-06-04

redis 的 maxmemory 配置以及 缓存淘汰策略

1. maxmemory 相关介绍maxmemory 的作用设置 redis 可用内存的上限。maxmemory 的配置将 maxmemory 设置为零将导致没有内存限制。这是 64 位系统的默认行为,而32位系统使用 3GB 的隐式内存限制。maxmemor
redis 的 maxmemory 配置以及 缓存淘汰策略
2015-05-05

Redis 的内存淘汰策略和过期删除策略的区别

目录前言过期删除策略如何设置过期时间?如何判定 key 已过期了?过期删除策略有哪些?Redis 过期删除策略是什么?内存淘汰策略如何设置 Redis 最大运行内存?Redis 内存淘汰策略有哪些?LRU 算法和 LFU 算法有什么区别?总
2022-07-04

关于redis Key淘汰策略的实现方法

1 配置文件中的最大内存删除策略 在redis的配置文件中,可以设置redis内存使用的最大值,当redis使用内存达到最大值时(如何知道已达到最大值?),redis会根据配置文件中的策略选取要删除的key,并删除这些key-value的值
2022-06-04

redis淘汰策略会删除磁盘上的key吗

否,redis淘汰策略不会删除磁盘上的key。该策略仅针对内存中的key,以腾出空间给新key,而磁盘上的持久化数据不受影响。Redis淘汰策略是否会删除磁盘上的Key否,Redis淘汰策略不会删除磁盘上的Key。详细信息:Redis
redis淘汰策略会删除磁盘上的key吗
2024-04-19

Redis的过期策略和内存淘汰策略最全总结与分析

文章前言提到内存管理,我们就需要考虑Redis的内存过期策略和内存淘汰机制。该文章便从这两方面入手,分享一些在Redis内存方面相关的基础知识。文章中使用的示例版本为Redis5.0版本。内存过期策略内存过期策略主要的作用就是,在缓存过期之后,能够及时的将失效
Redis的过期策略和内存淘汰策略最全总结与分析
2016-07-21

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录