Python中有哪些哈希结构
本篇文章为大家展示了Python中有哪些哈希结构,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。
Python的优点有哪些
1、简单易用,与C/C++、Java、C# 等传统语言相比,Python对代码格式的要求没有那么严格;2、Python属于开源的,所有人都可以看到源代码,并且可以被移植在许多平台上使用;3、Python面向对象,能够支持面向过程编程,也支持面向对象编程;4、Python是一种解释性语言,Python写的程序不需要编译成二进制代码,可以直接从源代码运行程序;5、Python功能强大,拥有的模块众多,基本能够实现所有的常见功能。
1、字典
PyDictKeysObject定义了字典哈希表的一些字段。其中有两个数组 dk_indices[] 和 dk_entries[],这两个便是真正的存储数据的数组。kv 数据保存在dk_entries[]数组中,dk_indices[]来存储 kv 数据在dk_enties数组中保存的索引。其中每个 kv 数据以entry的数据结构来存储,如下:
typedef struct { Py_hash_t me_hash; PyObject *me_key; PyObject *me_value; } PyDictKeyEntry;
me_hash缓存存 key 的哈希值,防止哈希值的重复计算。me_key和me_value便是 key 和 value 的真正数据了。
2、集合
集合和字典一样,底层也是哈希结构,和字典相比,可理解为只有 key,没有 values。
相比字典,集合简单了不少。在PySetObject中直接保存了存储数据的数组。
根据集合的底层数据结构分析,它解决哈希冲突也是使用的「开发寻址法」。
集合的一些常用操作:
# 初始化s1 = {'1', '2', '3'} # 不推荐,当元素中有字典时,会报错s2 = set(['1', '4', '5'])print(s1) # {'3', '1', '2'}print(s2) # {'3', '1', '2'} # 交集print(s1&s2) # {'1'}# 并集print(s1|s2) # {'3', '5', '4', '2', '1'}# 差集print(s1 - s2) # {'3', '2'}# 判断子集和超集s2.issubset(s1) # s2 是否为s1 的子集s1.issuperset(s2) # s1 是否为 s2 的超集 # 集合的一些内建方法# set.add(obj) 添加集合元素# set.remove(obj) 删除集合元素# set.update(set) 合并集合# set.pop() 随机删除一个元素,并返回该元素
上述内容就是Python中有哪些哈希结构,你们学到知识或技能了吗?如果还想学到更多技能或者丰富自己的知识储备,欢迎关注编程网行业资讯频道。
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341