我的编程空间,编程开发者的网络收藏夹
学习永远不晚

MySQL深分页问题解决的实战记录

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

MySQL深分页问题解决的实战记录

前言

我们日常做分页需求时,一般会用limit实现,但是当偏移量特别大的时候,查询效率就变得低下。本文将分4个方案,讨论如何优化MySQL百万数据的深分页问题,并附上最近优化生产慢SQL的实战案例。

limit深分页为什么会变慢?

先看下表结构哈:


CREATE TABLE account (
  id int(11) NOT NULL AUTO_INCREMENT COMMENT '主键Id',
  name varchar(255) DEFAULT NULL COMMENT '账户名',
  balance int(11) DEFAULT NULL COMMENT '余额',
  create_time datetime NOT NULL COMMENT '创建时间',
  update_time datetime NOT NULL ON UPDATE CURRENT_TIMESTAMP COMMENT '更新时间',
  PRIMARY KEY (id),
  KEY idx_name (name),
  KEY idx_update_time (update_time) //索引
) ENGINE=InnoDB AUTO_INCREMENT=1570068 DEFAULT CHARSET=utf8 ROW_FORMAT=REDUNDANT COMMENT='账户表';

假设深分页的执行SQL如下:


select id,name,balance from account where update_time> '2020-09-19' limit 100000,10;

这个SQL的执行时间如下:

执行完需要0.742秒,深分页为什么会变慢呢?如果换成 limit 0,10,只需要0.006秒哦

我们先来看下这个SQL的执行流程:

  1. 通过普通二级索引树idx_update_time,过滤update_time条件,找到满足条件的记录ID。
  2. 通过ID,回到主键索引树,找到满足记录的行,然后取出展示的列(回表)
  3. 扫描满足条件的100010行,然后扔掉前100000行,返回。

SQL的执行流程

执行计划如下:

SQL变慢原因有两个:

  1. limit语句会先扫描offset+n行,然后再丢弃掉前offset行,返回后n行数据。也就是说limit 100000,10,就会扫描100010行,而limit 0,10,只扫描10行。
  2. limit 100000,10 扫描更多的行数,也意味着回表更多的次数。

通过子查询优化

因为以上的SQL,回表了100010次,实际上,我们只需要10条数据,也就是我们只需要10次回表其实就够了。因此,我们可以通过减少回表次数来优化。

回顾B+ 树结构

那么,如何减少回表次数呢?我们先来复习下B+树索引结构哈~

InnoDB中,索引分主键索引(聚簇索引)和二级索引

  • 主键索引,叶子节点存放的是整行数据
  • 二级索引,叶子节点存放的是主键的值。

把条件转移到主键索引树

如果我们把查询条件,转移回到主键索引树,那就不就可以减少回表次数啦。转移到主键索引树查询的话,查询条件得改为主键id了,之前SQL的update_time这些条件咋办呢?抽到子查询那里嘛~

子查询那里怎么抽的呢?因为二级索引叶子节点是有主键ID的,所以我们直接根据update_time来查主键ID即可,同时我们把 limit 100000的条件,也转移到子查询,完整SQL如下:


select id,name,balance FROM account where id >= (select a.id from account a where a.update_time >= '2020-09-19' limit 100000, 1) LIMIT 10;

查询效果一样的,执行时间只需要0.038秒!

我们来看下执行计划

由执行计划得知,子查询 table a查询是用到了idx_update_time索引。首先在索引上拿到了聚集索引的主键ID,省去了回表操作,然后第二查询直接根据第一个查询的 ID往后再去查10个就可以了!

因此,这个方案是可以的~

INNER JOIN 延迟关联

延迟关联的优化思路,跟子查询的优化思路其实是一样的:都是把条件转移到主键索引树,然后减少回表。不同点是,延迟关联使用了inner join代替子查询。

优化后的SQL如下:


SELECT  acct1.id,acct1.name,acct1.balance FROM account acct1 INNER JOIN (SELECT a.id FROM account a WHERE a.update_time >= '2020-09-19' ORDER BY a.update_time LIMIT 100000, 10) AS  acct2 on acct1.id= acct2.id;

查询效果也是杠杆的,只需要0.034秒

执行计划如下:

查询思路就是,先通过idx_update_time二级索引树查询到满足条件的主键ID,再与原表通过主键ID内连接,这样后面直接走了主键索引了,同时也减少了回表。

标签记录法

limit 深分页问题的本质原因就是:偏移量(offset)越大,mysql就会扫描越多的行,然后再抛弃掉。这样就导致查询性能的下降。

其实我们可以采用标签记录法,就是标记一下上次查询到哪一条了,下次再来查的时候,从该条开始往下扫描。就好像看书一样,上次看到哪里了,你就折叠一下或者夹个书签,下次来看的时候,直接就翻到啦。

假设上一次记录到100000,则SQL可以修改为:


select  id,name,balance FROM account where id > 100000 order by id limit 10;

这样的话,后面无论翻多少页,性能都会不错的,因为命中了id索引。但是你,这种方式有局限性:需要一种类似连续自增的字段。

使用between...and...

很多时候,可以将limit查询转换为已知位置的查询,这样MySQL通过范围扫描between...and,就能获得到对应的结果。

如果知道边界值为100000,100010后,就可以这样优化:


select  id,name,balance FROM account where id between 100000 and 100010 order by id desc;

手把手实战案例

我们一起来看一个实战案例哈。假设现在有表结构如下,并且有200万数据.


CREATE TABLE account (
 id varchar(32) COLLATE utf8_bin NOT NULL COMMENT '主键',
 account_no varchar(64) COLLATE utf8_bin NOT NULL DEFAULT '' COMMENT '账号'
 amount decimal(20,2) DEFAULT NULL COMMENT '金额'
 type varchar(10) COLLATE utf8_bin DEFAULT NULL COMMENT '类型A,B'
 create_time datetime DEFAULT NULL COMMENT '创建时间',
 update_time datetime DEFAULT NULL COMMENT '更新时间',
 PRIMARY KEY (id),
 KEY `idx_account_no` (account_no),
 KEY `idx_create_time` (create_time)
 ) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_bin COMMENT='账户表' 

业务需求是这样:获取最2021年的A类型账户数据,上报到大数据平台。

一般思路的实现方式

很多伙伴接到这么一个需求,会直接这么实现了:


//查询上报总数量
Integer total = accountDAO.countAccount();

//查询上报总数量对应的SQL
<select id ='countAccount' resultType="java.lang.Integer">
  seelct count(1) 
  from account
  where create_time >='2021-01-01 00:00:00'
  and  type ='A'
</select>

//计算页数
int pageNo = total % pageSize == 0 ? total / pageSize : (total / pageSize + 1);

//分页查询,上报
for(int i = 0; i < pageNo; i++){
 List<AcctountPO> list = accountDAO.listAccountByPage(startRow,pageSize);
 startRow = (pageNo-1)*pageSize;
 //上报大数据
 postBigData(list);
}
 
//分页查询SQL(可能存在limit深分页问题,因为account表数据量几百万)
<select id ='listAccountByPage' >
  seelct * 
  from account
  where create_time >='2021-01-01 00:00:00'
  and  type ='A'
  limit #{startRow},#{pageSize}
</select>

实战优化方案

以上的实现方案,会存在limit深分页问题,因为account表数据量几百万。那怎么优化呢?

其实可以使用标签记录法,有些伙伴可能会有疑惑,id主键不是连续的呀,真的可以使用标签记录?

当然可以,id不是连续,我们可以通过order by让它连续嘛。优化方案如下:


//查询最小ID
String  lastId = accountDAO.queryMinId();

//查询最大ID对应的SQL
<select id="queryMinId" returnType=“java.lang.String”>
select MIN(id) 
from account
where create_time >='2021-01-01 00:00:00'
and type ='A'
</select>

//一页的条数
Integer pageSize = 100;

List<AcctountPO> list ;
do{
   list = listAccountByPage(lastId,pageSize);
   //标签记录法,记录上次查询过的Id
   lastId = list.get(list,size()-1).getId();
    //上报大数据
    postBigData(list);
}while(CollectionUtils.isNotEmpty(list));

<select id ="listAccountByPage">
  select * 
  from account 
  where create_time >='2021-01-01 00:00:00'
  and id > #{lastId}
  and type ='A'
  order by id asc  
  limit #{pageSize}
</select>

总结

到此这篇关于MySQL深分页问题的文章就介绍到这了,更多相关MySQL深分页问题的内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

MySQL深分页问题解决的实战记录

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

MySql深分页问题解决

目录1. 问题描述2. 问题分析3. 验证测试3.1 创建两个表3.2 创建两个函数3.3 编写存储过程3.4 编写存储过程3.5 创建索引3.6 验证测试4. 解决方案4.1 使用索引覆盖+子查询优化4.2 起始位置重定义4.3 降级策略
2023-02-03

快速解决mysql深分页问题

目录背景概括1、limit深分页问题描述2、sql慢原因分析聚簇索引和非聚簇索引常见解决方案通过子查询优化标签记录法方案对比实战案例总结背景日常需求开发过程中,相信大家对于limit一定不会陌生,但是使用limit时,当偏移量(offse
2022-07-13

MySQL深分页问题解决思路

这篇文章主要介绍了优雅地解决mysql深分页问题,本文将会讨论当mysql表大数据量的情况,如何优化深分页问题,并附上最近的优化慢sql问题的案例伪代码,需要的朋友可以参考下
2022-12-22

如何解决mysql深度分页问题

目录mysql深度分页问题1.基本分页:耗时0.019秒2.深度分页:耗时10.236秒3.深度ID分页:耗时0.052秒4.两步走深度分页:耗时0.049秒+0.017秒5.一步走深度分页:耗时0.05秒6.集成BeanSearcher框
2023-01-09

MySQL深分页问题的原因及解决方案

目录前言第一部分:深分页问题的背景和影响什么是深分页?深分页的影响实际场景中的问题第二部分:mysql 索引结构和查询执行流程MySQL 索引概述查询执行流程深分页查询的问题案例分析第三部分:深分页性能下降的原因1. 索引扫描的局限性2.
MySQL深分页问题的原因及解决方案
2024-09-29

MySQL深分页问题原理与三种解决方案

目录1 深分页问题1.1 创建表1.2 新增100万条数据1.3 深分页语句1.4 结果分析2 深分页优化方案2.1 方案一2.2 方案二2.2.1 优化语句2.2.2 执行计划2.2.3 结果分析2.3 方案三2.3.1 优化语句2.3.
2023-05-05

MySQL调优之SQL查询深度分页问题怎么解决

这篇文章主要讲解了“MySQL调优之SQL查询深度分页问题怎么解决”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“MySQL调优之SQL查询深度分页问题怎么解决”吧!一、问题引入例如当前存在一
2023-07-05

MySQL insert死锁问题解决详细记录

上周遇到一个因insert而引发的死锁问题,其成因比较令人费解,下面这篇文章主要给大家介绍了关于MySQL insert死锁问题解决详细记录的相关资料,需要的朋友可以参考下
2022-11-13

mysql limit分页过慢的问题如何解决

本篇内容主要讲解“mysql limit分页过慢的问题如何解决”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“mysql limit分页过慢的问题如何解决”吧!1、使用表的覆盖索引加速分页查询。由
2023-06-20

使用Golang包解决问题的实战经验分享

实战经验分享:运用Golang包的使用方法解决问题引言:Golang作为一种现代化的编程语言,得到了越来越多开发者的青睐。它的简洁、高效和并发特性使得它成为了解决复杂问题的理想选择。在Golang中包的使用非常重要,通过合理运用各种包,我
使用Golang包解决问题的实战经验分享
2024-01-16

详解Python连接oracle的问题记录与解决

目录技术框架开发步骤一、安装cx_oracle二、编写数据库操作类三、输入订单号,执行查询四、格式化打印五、打印效果问题记录后期优化昨日晚平台升级,我们成功送BUG上线,今天系统问题又多了起来,大多数时候的运维问题需要根据业务反馈的#订单号
2023-04-19

腾讯云TDSQL监控库密码忘记问题解决实战

首先,给大家介绍一下TDSQL。TDSQL MySQL 版(TDSQL for MySQL)是腾讯打造的一款分布式数据库产品,具备强一致高可用、全球部署架构、分布式水平扩展、高性能、企业级安全等特性,同时提供智能 DBA、自动化运营、监控告警等配套设施,为客户
腾讯云TDSQL监控库密码忘记问题解决实战
2018-11-04

编程热搜

目录