我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Werkzeug Local与Loca

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Werkzeug Local与Loca

首先贴出官方文档地址:http://werkzeug.pocoo.org/doc...
几个local?
threading.local
werkzeug.local模块中的:
Local
LocalStack
LocaProxy

why not threading.local?

threading.local,以前接触过java的,对这个再熟悉不过了。线程局部变量,也就是每个线程的私有变量,具有线程隔离性。

按我们正常的理解,应该是每一个http请求对应一个处理线程。那么这样看来使用threading.local应该够了,为什么werkzeug还自己搞了一套?装逼?非也。

在python中,除了线程之外,还有个叫协程的东东,(这里不提进程)。java中貌似是无法实现协程的。而python的协程感觉高大尚的样子,python3.5开始对协程内置支持,而且也有相关开源库greenlet等。

协程是什么?
举个例子,比如一个线程在处理IO时,该线程是处于空闲状态的,等待IO返回。但是此时如果不让我们的线程干等着cpu时间片耗光,有没有其他办法,解决思路就是采用协程处理任务,一个线程中可以运行多个协程,当当前协程去处理IO时,线程可以马上调度其他协程继续运行,而不是干等着不干活。

这么一说,我们知道了协程会复用线程,WSGI不保证每个请求必须由一个线程来处理,如果WSGI服务器不是每个线程派发一个请求,而是每个协程派发一个请求,所以如果使用thread local变量可能会造成请求间数据相互干扰,因为一个线程中存在多个请求。
所以werkzeug给出了自己的解决方案:werkzeug.local模块。

from werkzeug.local import Local, LocalManager

local = Local()
local_manager = LocalManager([local])

def application(environ, start_response):
    local.request = request = Request(environ)
    ...

application = local_manager.make_middleware(application)

Local配合LocalManager会确保不管是协程还是线程,只要当前请求处理完成之后清除Local中对应的内容。

>>> loc = Local()
>>> loc.foo = 42
>>> release_local(loc)
>>> hasattr(loc, 'foo')

当然,你也可以调用werkzeug.local.release_local(local)手动释放Local或者LocalStack ,但是不能清除代理对象LocalProxy(代理对象底层保留了对Local对象的引用,以便在之后释放)的数据。

>>> ls = LocalStack()
>>> ls.push(42)
>>> ls.top
42
>>> ls.push(23)
>>> ls.top
23
>>> ls.pop()
23
>>> ls.top

LocalStack,与Local类似,但是管理数据的方式是采用栈的方式,可以通过LocalManager对象强制释放,但是不建议这么做,而是通过其pop方法弹出。

from werkzeug.local import Local
l = Local()

# these are proxies
request = l('request')
user = l('user')


from werkzeug.local import LocalStack
_response_local = LocalStack()

# this is a proxy
response = _response_local()

werkzeug.local.LocalProxy:Local对象的一个代理。如果你需要创建Local或LocalStack对象的代理,可以直接call。

session = LocalProxy(lambda: get_current_request().session)

from werkzeug.local import Local, LocalProxy
local = Local()
request = LocalProxy(local, 'request')

>>> from werkzeug.local import LocalProxy
>>> isinstance(request, LocalProxy)
True

你也可以通过LocalProxy构造一个代理对象,参数为可以调用的对象或者函数。
_get_current_object()返回被代理的对象。

werkzeug.local模块关键部分代码:

import copy
from functools import update_wrapper
from werkzeug.wsgi import ClosingIterator
from werkzeug._compat import PY2, implements_bool
try:
    from greenlet import getcurrent as get_ident
except ImportError:
    try:
        from thread import get_ident
    except ImportError:
        from _thread import get_ident


def release_local(local):
    local.__release_local__()


class Local(object):
    __slots__ = ('__storage__', '__ident_func__')

    def __init__(self):
        object.__setattr__(self, '__storage__', {})
        object.__setattr__(self, '__ident_func__', get_ident)

    def __iter__(self):
        return iter(self.__storage__.items())

    def __call__(self, proxy):
        """Create a proxy for a name."""
        return LocalProxy(self, proxy)

    def __release_local__(self):
        self.__storage__.pop(self.__ident_func__(), None)

    def __getattr__(self, name):
        try:
            return self.__storage__[self.__ident_func__()][name]
        except KeyError:
            raise AttributeError(name)

    def __setattr__(self, name, value):
        ident = self.__ident_func__()
        storage = self.__storage__
        try:
            storage[ident][name] = value
        except KeyError:
            storage[ident] = {name: value}

    def __delattr__(self, name):
        try:
            del self.__storage__[self.__ident_func__()][name]
        except KeyError:
            raise AttributeError(name)


class LocalStack(object):

    def __init__(self):
        self._local = Local()

    def __release_local__(self):
        self._local.__release_local__()

    def __call__(self):
        def _lookup():
            rv = self.top
            if rv is None:
                raise RuntimeError('object unbound')
            return rv
        return LocalProxy(_lookup)

    def push(self, obj):
        rv = getattr(self._local, 'stack', None)
        if rv is None:
            self._local.stack = rv = []
        rv.append(obj)
        return rv

    def pop(self):
        stack = getattr(self._local, 'stack', None)
        if stack is None:
            return None
        elif len(stack) == 1:
            release_local(self._local)
            return stack[-1]
        else:
            return stack.pop()

    @property
    def top(self):
        try:
            return self._local.stack[-1]
        except (AttributeError, IndexError):
            return None


class LocalManager(object):

    def cleanup(self):
        for local in self.locals:
            release_local(local)

    def make_middleware(self, app):
        def application(environ, start_response):
            return ClosingIterator(app(environ, start_response), self.cleanup)
        return application


@implements_bool
class LocalProxy(object):

    def __init__(self, local, name=None):
        object.__setattr__(self, '_LocalProxy__local', local)
        object.__setattr__(self, '__name__', name)

    def _get_current_object(self):
        if not hasattr(self.__local, '__release_local__'):
            return self.__local()
        try:
            return getattr(self.__local, self.__name__)
        except AttributeError:
            raise RuntimeError('no object bound to %s' % self.__name__)

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Werkzeug Local与Loca

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Werkzeug Local与Loca

首先贴出官方文档地址:http://werkzeug.pocoo.org/doc...几个local?threading.localwerkzeug.local模块中的:LocalLocalStackLocaProxywhy not thr
2023-01-31

开发函数计算的正确姿势 —— 使用 Fun Local 本地运行与调试

前言首先介绍下在本文出现的几个比较重要的概念:函数计算(Function Compute): 函数计算是一个事件驱动的服务,通过函数计算,用户无需管理服务器等运行情况,只需编写代码并上传。函数计算准备计算资源,并以弹性伸缩的方式运行用户代码
2023-06-03

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录