python神经网络使用Keras进行模型的保存与读取
短信预约 -IT技能 免费直播动态提醒
学习前言
开始做项目的话,有些时候会用到别人训练好的模型,这个时候要学会load噢。
Keras中保存与读取的重要函数
1、model.save
model.save用于保存模型,在保存模型前,首先要利用pip install安装h5py的模块,这个模块在Keras的模型保存与读取中常常被使用,用于定义保存格式。
pip install h5py
完成安装后,可以通过如下函数保存模型。
model.save("./model.hdf5")
其中,model是已经训练完成的模型,save函数传入的参数就是保存后的位置+名字。
2、load_model
load_model用于载入模型。
具体使用方式如下:
model = load_model("./model.hdf5")
其中,load_model函数传入的参数就是已经完成保存的模型的位置+名字。./表示保存在当前目录。
全部代码
这是一个简单的手写体识别例子,在之前也讲解过如何构建
python神经网络学习使用Keras进行简单分类,在最后我添加上了模型的保存与读取函数。
import numpy as np
from keras.models import Sequential,load_model,save_model
from keras.layers import Dense,Activation ## 全连接层
from keras.datasets import mnist
from keras.utils import np_utils
from keras.optimizers import RMSprop
# 获取训练集
(X_train,Y_train),(X_test,Y_test) = mnist.load_data()
# 首先进行标准化
X_train = X_train.reshape(X_train.shape[0],-1)/255
X_test = X_test.reshape(X_test.shape[0],-1)/255
# 计算categorical_crossentropy需要对分类结果进行categorical
# 即需要将标签转化为形如(nb_samples, nb_classes)的二值序列
Y_train = np_utils.to_categorical(Y_train,num_classes= 10)
Y_test = np_utils.to_categorical(Y_test,num_classes= 10)
# 构建模型
model = Sequential([
Dense(32,input_dim = 784),
Activation("relu"),
Dense(10),
Activation("softmax")
]
)
rmsprop = RMSprop(lr = 0.001,rho = 0.9,epsilon = 1e-08,decay = 0)
## compile
model.compile(loss = 'categorical_crossentropy',optimizer = rmsprop,metrics=['accuracy'])
print("\ntraining")
cost = model.fit(X_train,Y_train,nb_epoch = 2,batch_size = 100)
print("\nTest")
# 测试
cost,accuracy = model.evaluate(X_test,Y_test)
print("accuracy:",accuracy)
# 保存模型
model.save("./model.hdf5")
# 删除现有模型
del model
print("model had been del")
# 再次载入模型
model = load_model("./model.hdf5")
# 预测
cost,accuracy = model.evaluate(X_test,Y_test)
print("accuracy:",accuracy)
实验结果为:
Epoch 1/2
60000/60000 [==============================] - 6s 104us/step - loss: 0.4217 - acc: 0.8888
Epoch 2/2
60000/60000 [==============================] - 6s 99us/step - loss: 0.2240 - acc: 0.9366
Test
10000/10000 [==============================] - 1s 149us/step
accuracy: 0.9419
model had been del
10000/10000 [==============================] - 1s 117us/step
accuracy: 0.9419
以上就是python神经网络使用Keras进行模型的保存与读取的详细内容,更多关于Keras模型保存读取的资料请关注编程网其它相关文章!
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341