我的编程空间,编程开发者的网络收藏夹
学习永远不晚

怎么在Python中使用matplotlib绘图

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

怎么在Python中使用matplotlib绘图

今天就跟大家聊聊有关怎么在Python中使用matplotlib绘图,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。

python有哪些常用库

python常用的库:1.requesuts;2.scrapy;3.pillow;4.twisted;5.numpy;6.matplotlib;7.pygama;8.ipyhton等。

Matplotlib 是 Python 的绘图库。 它可与 NumPy 一起使用,提供了一种有效的 MatLab 开源替代方案。 它也可以和图形工具包一起使用,如 PyQt 和wxPython。

pip3 install matplotlib -i https://pypi.tuna.tsinghua.edu.cn/simple
import matplotlib.pyplot as plt

显示中文

借助全局参数配置字典rcParams,只需要在代码开头,添加如下两行代码即可

plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False

同时还可以设置字体,常见字体:

font.family  字体的名称
sans-serif   西文字体(默认)
SimHei       中文黑体
FangSong     中文仿宋
YouYuan      中文幼圆
STSong       华文宋体
Kaiti        中文楷体
LiSu         中文隶书

字体风格

plt.rcParams["font.style"] = "italic"

绘制子图

plt.subplot2grid()

plt.subplot2grid((3,3),(0,0),colspan=3)""""""plt.subplot2grid((3,3),(1,0),colspan=2)""""""plt.subplot2grid((3,3),(1,2),rowspan=2)""""""plt.subplot2grid((3,3),(2,0))""""""plt.subplot2grid((3,3),(2,1))plt.show()

怎么在Python中使用matplotlib绘图
2. plt.subplot()

import numpy as npimport pandas as pdimport matplotlib.pyplot as plt# 画第1个图:折线图x=np.arange(1,100)plt.subplot(221)plt.plot(x,x*x)# 画第2个图:散点图plt.subplot(222)plt.scatter(np.arange(0,10), np.random.rand(10))# 画第3个图:饼图plt.subplot(223)plt.pie(x=[15,30,45,10],labels=list('ABCD'),autopct='%.0f',explode=[0,0.05,0,0])# 画第4个图:条形图plt.subplot(224)plt.bar([20,10,30,25,15],[25,15,35,30,20],color='b')plt.show()

怎么在Python中使用matplotlib绘图

matplotlib绘图设置不显示边框、坐标轴

对于有些图形我们希望通过隐藏坐标轴来显得更加美观

plt.xticks([])plt.yticks([])ax = plt.subplot(2,5,1)# 去除黑框ax.spines['top'].set_visible(False)ax.spines['right'].set_visible(False)ax.spines['bottom'].set_visible(False)ax.spines['left'].set_visible(False)

实例:

#author:https://beishan.blog.csdn.net/import matplotlib.pyplot as pltfor i in range(0,10):    fig = plt.gcf()    fig.set_size_inches(12,6)    ax = plt.subplot(2,5,i+1)    # 去除坐标轴    plt.xticks([])    plt.yticks([])    # 去除黑框    ax.spines['top'].set_visible(False)    ax.spines['right'].set_visible(False)    ax.spines['bottom'].set_visible(False)    ax.spines['left'].set_visible(False)    # 设置各个子图间间距    plt.subplots_adjust(left=0.10, top=0.88, right=0.65, bottom=0.08, wspace=0.02, hspace=0.02)    ax.imshow(Xtrain[i],cmap="binary")

怎么在Python中使用matplotlib绘图

提高分辨率

如果感觉默认生成的图形分辨率不够高,可以尝试修改 dpi 来提高分辨率

plt.figure(figsize = (7,6),dpi =100)

设置绘图风格

有时我们会觉得matplotlib默认制作出来的图片太朴素了,不够高级,其实开发者也内置了几十种主题让我们自己选择,只要使用plt.style.use(‘主题名')指定主题即可

plt.style.use('ggplot')

常用的样式有

Solarize_Light2
_classic_test_patch
bmh
classic
dark_background
fast
fivethirtyeight
ggplot
grayscale
seaborn
seaborn-bright
seaborn-colorblind
seaborn-dark
seaborn-dark-palette
seaborn-darkgrid
seaborn-deep
seaborn-muted
seaborn-notebook
seaborn-paper
seaborn-pastel
seaborn-poster
seaborn-talk
seaborn-ticks
seaborn-white
seaborn-whitegrid
tableau-colorblind10

添加标题

plt.title("2020-2021北山啦粉丝数增长图")

显示网格

plt.grid()plt.grid(color='g',linewidth='1',linestyle='-.')

图例设置

plt.legend(["2020","2021"],loc="best")

也可以给图例添加标题

plt.plot([1,3,5,7],[4,9,6,8],"ro--")plt.plot([1,2,3,4], [2,4,6,8],"gs-.")plt.legend(["2020","2021"],loc="best",title="标题")plt.title("2020-2021北山啦粉丝数增长图")

添加公式

有时我们在绘图时需要添加带有数学符号、公式的文字,

plt.text(11000,0.45,r'拟合曲线为$f(x) = x^2-4x+0.5$')

图形交互设置

jupyter中的魔法方法

%matplotlib notebook 弹出可交互的matplotlib窗口%matplotlib qt5 弹出matplotlib控制台%matplotlib inline 直接嵌入图表,不需要使用plt.show()

保存图片

plt.savefig("pic.png",dpi=100,bbox_inches="tight")

怎么在Python中使用matplotlib绘图

读取图片

方法一

from PIL import Imageimage = Image.open("./pic.png")image.show()

怎么在Python中使用matplotlib绘图

方法二

import matplotlib.pyplot as pltX = plt.imread("./pic.png")plt.imshow(X)

怎么在Python中使用matplotlib绘图

条形图

def f(t):    return np.exp(-t) * np.cos(2*np.pi*t)a = np.arange(0,5,0.02)plt.subplot(211)plt.plot(a,f(a))plt.subplot(212)plt.plot(a,np.cos(2*np.pi*a),'r--')plt.show()

怎么在Python中使用matplotlib绘图

b = np.arange(0,2,0.02)plt.plot(b,np.sin(2*np.pi*b),'--',b,np.cos(2*np.pi*b),"*")

怎么在Python中使用matplotlib绘图

散点图

import numpy as npimport matplotlib.pyplot as plt# Fixing random state for reproducibilitynp.random.seed(19680801)N = 50x = np.random.rand(N)y = np.random.rand(N)colors = np.random.rand(N)area = (30 * np.random.rand(N))**2  # 0 to 15 point radiiplt.scatter(x, y, s=area, c=colors, alpha=0.5)plt.show()

怎么在Python中使用matplotlib绘图

带表格的图形

import numpy as npimport matplotlib.pyplot as pltdata = [[ 66386, 174296,  75131, 577908,  32015],        [ 58230, 381139,  78045,  99308, 160454],        [ 89135,  80552, 152558, 497981, 603535],        [ 78415,  81858, 150656, 193263,  69638],        [139361, 331509, 343164, 781380,  52269]]columns = ('Freeze', 'Wind', 'Flood', 'Quake', 'Hail')rows = ['%d year' % x for x in (100, 50, 20, 10, 5)]values = np.arange(0, 2500, 500)value_increment = 1000# Get some pastel shades for the colorscolors = plt.cm.BuPu(np.linspace(0, 0.5, len(rows)))n_rows = len(data)index = np.arange(len(columns)) + 0.3bar_width = 0.4# Initialize the vertical-offset for the stacked bar chart.y_offset = np.zeros(len(columns))# Plot bars and create text labels for the tablecell_text = []for row in range(n_rows):    plt.bar(index, data[row], bar_width, bottom=y_offset, color=colors[row])    y_offset = y_offset + data[row]    cell_text.append(['%1.1f' % (x / 1000.0) for x in y_offset])# Reverse colors and text labels to display the last value at the top.colors = colors[::-1]cell_text.reverse()# Add a table at the bottom of the axesthe_table = plt.table(cellText=cell_text,                      rowLabels=rows,                      rowColours=colors,                      colLabels=columns,                      loc='bottom')# Adjust layout to make room for the table:plt.subplots_adjust(left=0.2, bottom=0.2)plt.ylabel("Loss in ${0}'s".format(value_increment))plt.yticks(values * value_increment, ['%d' % val for val in values])plt.xticks([])plt.title('Loss by Disaster')plt.show()

怎么在Python中使用matplotlib绘图

看完上述内容,你们对怎么在Python中使用matplotlib绘图有进一步的了解吗?如果还想了解更多知识或者相关内容,请关注编程网行业资讯频道,感谢大家的支持。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

怎么在Python中使用matplotlib绘图

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

怎么在Python中使用matplotlib绘图

今天就跟大家聊聊有关怎么在Python中使用matplotlib绘图,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。python有哪些常用库python常用的库:1.requesuts
2023-06-14

python中怎么用matplotlib绘图

要使用matplotlib绘图,需要先安装matplotlib库。可以使用以下命令安装:```pip install matplotlib```安装完成后,可以根据需要选择合适的图形进行绘制。以下是几个常见的示例:1. 折线图:```pyt
2023-09-20

如何在python中使用matplotlib库绘图

这篇文章给大家介绍如何在python中使用matplotlib库绘图,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。首先介绍绘图时常用的基础命令:1.plt.plot(x,y)即为绘图命令。①基础画图:plt.plot(
2023-06-15

怎么在Pyside2中使用Matplotlib进行绘图

这篇文章主要为大家详细介绍了怎么在Pyside2中使用Matplotlib进行绘图,文中示例代码介绍的非常详细,具有一定的参考价值,发现的小伙伴们可以参考一下:1. 界面设计简单创建一个界面:一个 GraphicsView 和 一个 Pus
2023-06-06

怎么使用Python的Matplotlib库绘图

这篇“怎么使用Python的Matplotlib库绘图”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“怎么使用Python的M
2023-07-02

Python中怎么使用Matplotlib库绘制图形

这篇文章主要介绍“Python中怎么使用Matplotlib库绘制图形”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Python中怎么使用Matplotlib库绘制图形”文章能帮助大家解决问题。一、
2023-07-02

Python中怎么用Matplotlib绘制图表

这篇文章主要介绍“Python中怎么用Matplotlib绘制图表”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Python中怎么用Matplotlib绘制图表”文章能帮助大家解决问题。前言Matp
2023-06-28

怎么使用Python Matplotlib绘制条形图

今天小编给大家分享一下怎么使用Python Matplotlib绘制条形图的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。前言
2023-07-02

Python中怎么用matplotlib绘制直方图

这篇文章主要介绍“Python中怎么用matplotlib绘制直方图”,在日常操作中,相信很多人在Python中怎么用matplotlib绘制直方图问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Python中
2023-06-21

python绘图模块matplotlib怎么用

这篇文章给大家分享的是有关python绘图模块matplotlib怎么用的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。 上周对线上某几个磁盘进行了fio硬盘性能测试,测试完成之后的结果需要绘制成图像展示出来
2023-06-14

在Python中使用Matplotlib绘制常见图表方式

Matplotlib旨在绘制常见的图表,包括折线图、条形图、饼图、散点图和直方图。本文详细说明了使用Matplotlib创建这些图表的方法,涵盖了基本配置和自定义选项。通过指定数据、标签、颜色和样式,可以生成信息丰富的可视化,帮助分析和传达数据。Matplotlib提供了强大的工具,可以创建定制的图表,以满足特定的可视化需求。
在Python中使用Matplotlib绘制常见图表方式
2024-04-02

怎么用Python matplotlib plotly绘制图表

这篇文章主要讲解了“怎么用Python matplotlib plotly绘制图表”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“怎么用Python matplotlib plotly绘制图表
2023-06-29

Python怎么绘制Matplotlib柱状图

这篇文章主要讲解了“Python怎么绘制Matplotlib柱状图”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Python怎么绘制Matplotlib柱状图”吧!前言:柱状图是一种使用矩形
2023-06-30

Python Matplotlib绘制箱线图boxplot()函数怎么使用

这篇文章主要介绍“Python Matplotlib绘制箱线图boxplot()函数怎么使用”,在日常操作中,相信很多人在Python Matplotlib绘制箱线图boxplot()函数怎么使用问题上存在疑惑,小编查阅了各式资料,整理出简
2023-07-02

python怎么使用Matplotlib绘制多种常见图形

今天小编给大家分享一下python怎么使用Matplotlib绘制多种常见图形的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。
2023-06-30

python使用matplotlib绘制柱状图教程

Matplotlib的概念这里就不多介绍了,关于绘图库Matplotlib的安装方法:点击这里 小编之前也和大家分享过python使用matplotlib实现的折线图和制饼图效果,感兴趣的朋友们也可以点击查看,下面来看看python使用ma
2022-06-04

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录