我的编程空间,编程开发者的网络收藏夹
学习永远不晚

pytorch实现ResNet结构的实例代码

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

pytorch实现ResNet结构的实例代码

1.ResNet的创新

现在重新稍微系统的介绍一下ResNet网络结构。 ResNet结构首先通过一个卷积层然后有一个池化层,然后通过一系列的残差结构,最后再通过一个平均池化下采样操作,以及一个全连接层的得到了一个输出。ResNet网络可以达到很深的层数的原因就是不断的堆叠残差结构而来的。

1)亮点

网络中的亮点 :

  • 超深的网络结构( 突破1000 层)
  • 提出residual 模块
  • 使用Batch Normalization 加速训练( 丢弃dropout)

但是,一般来说,并不是一直的加深神经网络的结构就会得到一个更好的结果,一般太深的网络会出现过拟合的现象严重,可能还没有一些浅层网络要好。

在这里插入图片描述

2)原因

其中有两个原因:

  • 梯度消失或梯度爆炸

当层数过多的时候,假设每一层的误差梯度都是一个小于1的数值,当进行方向传播的过程中,每向前传播一层,都要乘以一个小于1的误差梯度,当网络越来越深时,所成的小于1的系数也就越来越多,此时梯度便越趋近于0,这样梯度便会越来越小。这便会造成梯度消失的现象。

而当所成的误差梯度是一个大于1的系数,而随着网络层数的加深,梯度便会越来越大,这便会造成梯度爆炸的现象。

  • 退化问题(degradation problem)

当解决了梯度消失或者梯度爆炸的问题之后,其实网络的效果可能还是不尽如意,还可能有退化问题。为此,ResNet提出了残差结构来解决这个退化问题。 也正是因为有这个残差的结构,所以才可以搭建这么深的网络。

在这里插入图片描述

2.ResNet的结构

残差结构如图所示

在这里插入图片描述

作图是针对ResNet-18/34层浅层网络的结构,右图是ResNet-50/101/152层深层网络的结构,其中注意:主分支与shortcut 的输出特征矩阵shape。

一下表格为网络的一些主要参数

在这里插入图片描述

可以看见,不同层数的网络结构其实框架是类似的,不同的至少堆叠的残差结构的数量。

1)浅层的残差结构

在这里插入图片描述

需要注意,有些残差结构的ShortCut是实线,而有的是虚线,这两者是不同的。对于左图来说,ShortCut是实线,这表明输入与输出的shape是一样的,所以可以直接的进行相加。而对于右图来说,其输入的shape与输出的shape是不一样的,这时候需要调整步长stribe与kernel size来使得两条路(主分支与捷径分支)所处理好的shape是一模一样的。

2)深层的残差结构

在这里插入图片描述

同样的,需要注意,主分支与shortcut 的输出特征矩阵shape必须相同,同样的通过步长来调整。

但是注意原论文中:

右侧虚线残差结构的主分支上、第一个1x1卷积层的步距是2,第二个3x3卷积层的步距是1.

而在pytorch官方实现的过程中是第一个1x1卷积层的步距是1,第二个3x3卷积层步距是2,这样能够在ImageNet的top1上提升大概0.5%的准确率。

所以在conv3_x,conv4_x,conv5_x中所对应的残差结构的第一层,都是指虚线的残差结构,其他的残差结构是实线的残差结构。

3)总结

对于每个大模块中的第一个残差结构,需要通过虚线分支来调整残差结构的输入与输出是同一个shape。此时使用了下采样的操作函数。
对于每个大模块中的其他剩余的残差结构,只需要通过实线分支来调整残差网络结构,因为其输出和输入本身就是同一个shape的。

对于第一个大模块的第一个残差结构,其第二个3x3的卷积中,步长是1的,而其他的三个大模块的步长均为2.
在每一个大模块的维度变换中,主要是第一个残差结构使得shape减半,而模块中其他的残差结构都是没有改变shape的。也真因为没有改变shape,所以这些残差结构才可以直接的通过实线进行相加。

3.Batch Normalization

Batch Normalization的目的是使我们的一批(Batch)特征矩阵feature map满足均值为0,方差为1的分布规律。

在这里插入图片描述

其中:
μ,σ_2在正向传播过程中统计得到
γ,β在反向传播过程中训练得到

Batch Normalization是google团队在2015年论文《Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》提出的。通过该方法能够加速网络的收敛并提升准确率。

具体的相关原理见:Batch Normalization详解以及pytorch实验

4.参考代码


import torch
import torch.nn as nn

# 分类数目
num_class = 5
# 各层数目
resnet18_params = [2, 2, 2, 2]
resnet34_params = [3, 4, 6, 3]
resnet50_params = [3, 4, 6, 3]
resnet101_params = [3, 4, 23, 3]
resnet152_params = [3, 8, 36, 3]


# 定义Conv1层
def Conv1(in_planes, places, stride=2):
    return nn.Sequential(
        nn.Conv2d(in_channels=in_planes,out_channels=places,kernel_size=7,stride=stride,padding=3, bias=False),
        nn.BatchNorm2d(places),
        nn.ReLU(inplace=True),
        nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
    )


# 浅层的残差结构
class BasicBlock(nn.Module):
    def __init__(self,in_places,places, stride=1,downsampling=False, expansion = 1):
        super(BasicBlock,self).__init__()
        self.expansion = expansion
        self.downsampling = downsampling

        # torch.Size([1, 64, 56, 56]), stride = 1
        # torch.Size([1, 128, 28, 28]), stride = 2
        # torch.Size([1, 256, 14, 14]), stride = 2
        # torch.Size([1, 512, 7, 7]), stride = 2
        self.basicblock = nn.Sequential(
            nn.Conv2d(in_channels=in_places, out_channels=places, kernel_size=3, stride=stride, padding=1, bias=False),
            nn.BatchNorm2d(places),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_channels=places, out_channels=places, kernel_size=3, stride=1, padding=1, bias=False),
            nn.BatchNorm2d(places * self.expansion),
        )

        # torch.Size([1, 64, 56, 56])
        # torch.Size([1, 128, 28, 28])
        # torch.Size([1, 256, 14, 14])
        # torch.Size([1, 512, 7, 7])
        # 每个大模块的第一个残差结构需要改变步长
        if self.downsampling:
            self.downsample = nn.Sequential(
                nn.Conv2d(in_channels=in_places, out_channels=places*self.expansion, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(places*self.expansion)
            )
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        # 实线分支
        residual = x
        out = self.basicblock(x)

        # 虚线分支
        if self.downsampling:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)
        return out


# 深层的残差结构
class Bottleneck(nn.Module):

    # 注意:默认 downsampling=False
    def __init__(self,in_places,places, stride=1,downsampling=False, expansion = 4):
        super(Bottleneck,self).__init__()
        self.expansion = expansion
        self.downsampling = downsampling

        self.bottleneck = nn.Sequential(
            # torch.Size([1, 64, 56, 56]),stride=1
            # torch.Size([1, 128, 56, 56]),stride=1
            # torch.Size([1, 256, 28, 28]), stride=1
            # torch.Size([1, 512, 14, 14]), stride=1
            nn.Conv2d(in_channels=in_places,out_channels=places,kernel_size=1,stride=1, bias=False),
            nn.BatchNorm2d(places),
            nn.ReLU(inplace=True),
            # torch.Size([1, 64, 56, 56]),stride=1
            # torch.Size([1, 128, 28, 28]), stride=2
            # torch.Size([1, 256, 14, 14]), stride=2
            # torch.Size([1, 512, 7, 7]), stride=2
            nn.Conv2d(in_channels=places, out_channels=places, kernel_size=3, stride=stride, padding=1, bias=False),
            nn.BatchNorm2d(places),
            nn.ReLU(inplace=True),
            # torch.Size([1, 256, 56, 56]),stride=1
            # torch.Size([1, 512, 28, 28]), stride=1
            # torch.Size([1, 1024, 14, 14]), stride=1
            # torch.Size([1, 2048, 7, 7]), stride=1
            nn.Conv2d(in_channels=places, out_channels=places * self.expansion, kernel_size=1, stride=1, bias=False),
            nn.BatchNorm2d(places * self.expansion),
        )

        # torch.Size([1, 256, 56, 56])
        # torch.Size([1, 512, 28, 28])
        # torch.Size([1, 1024, 14, 14])
        # torch.Size([1, 2048, 7, 7])
        if self.downsampling:
            self.downsample = nn.Sequential(
                nn.Conv2d(in_channels=in_places, out_channels=places*self.expansion, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(places*self.expansion)
            )
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        # 实线分支
        residual = x
        out = self.bottleneck(x)

        # 虚线分支
        if self.downsampling:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


class ResNet(nn.Module):
    def __init__(self,blocks, blockkinds, num_classes=num_class):
        super(ResNet,self).__init__()

        self.blockkinds = blockkinds
        self.conv1 = Conv1(in_planes = 3, places= 64)

        # 对应浅层网络结构
        if self.blockkinds == BasicBlock:
            self.expansion = 1
            # 64 -> 64
            self.layer1 = self.make_layer(in_places=64, places=64, block=blocks[0], stride=1)
            # 64 -> 128
            self.layer2 = self.make_layer(in_places=64, places=128, block=blocks[1], stride=2)
            # 128 -> 256
            self.layer3 = self.make_layer(in_places=128, places=256, block=blocks[2], stride=2)
            # 256 -> 512
            self.layer4 = self.make_layer(in_places=256, places=512, block=blocks[3], stride=2)

            self.fc = nn.Linear(512, num_classes)

        # 对应深层网络结构
        if self.blockkinds == Bottleneck:
            self.expansion = 4
            # 64 -> 64
            self.layer1 = self.make_layer(in_places = 64, places= 64, block=blocks[0], stride=1)
            # 256 -> 128
            self.layer2 = self.make_layer(in_places = 256,places=128, block=blocks[1], stride=2)
            # 512 -> 256
            self.layer3 = self.make_layer(in_places=512,places=256, block=blocks[2], stride=2)
            # 1024 -> 512
            self.layer4 = self.make_layer(in_places=1024,places=512, block=blocks[3], stride=2)

            self.fc = nn.Linear(2048, num_classes)

        self.avgpool = nn.AvgPool2d(7, stride=1)

        # 初始化网络结构
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                # 采用了何凯明的初始化方法
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

    def make_layer(self, in_places, places, block, stride):

        layers = []

        # torch.Size([1, 64, 56, 56])  -> torch.Size([1, 256, 56, 56]), stride=1 故w,h不变
        # torch.Size([1, 256, 56, 56]) -> torch.Size([1, 512, 28, 28]), stride=2 故w,h变
        # torch.Size([1, 512, 28, 28]) -> torch.Size([1, 1024, 14, 14]),stride=2 故w,h变
        # torch.Size([1, 1024, 14, 14]) -> torch.Size([1, 2048, 7, 7]), stride=2 故w,h变
        # 此步需要通过虚线分支,downsampling=True
        layers.append(self.blockkinds(in_places, places, stride, downsampling =True))

        # torch.Size([1, 256, 56, 56]) -> torch.Size([1, 256, 56, 56])
        # torch.Size([1, 512, 28, 28]) -> torch.Size([1, 512, 28, 28])
        # torch.Size([1, 1024, 14, 14]) -> torch.Size([1, 1024, 14, 14])
        # torch.Size([1, 2048, 7, 7]) -> torch.Size([1, 2048, 7, 7])
        # print("places*self.expansion:", places*self.expansion)
        # print("block:", block)
        # 此步需要通过实线分支,downsampling=False, 每个大模块的第一个残差结构需要改变步长
        for i in range(1, block):
            layers.append(self.blockkinds(places*self.expansion, places))

        return nn.Sequential(*layers)


    def forward(self, x):

        # conv1层
        x = self.conv1(x)   # torch.Size([1, 64, 56, 56])

        # conv2_x层
        x = self.layer1(x)  # torch.Size([1, 256, 56, 56])
        # conv3_x层
        x = self.layer2(x)  # torch.Size([1, 512, 28, 28])
        # conv4_x层
        x = self.layer3(x)  # torch.Size([1, 1024, 14, 14])
        # conv5_x层
        x = self.layer4(x)  # torch.Size([1, 2048, 7, 7])

        x = self.avgpool(x) # torch.Size([1, 2048, 1, 1]) / torch.Size([1, 512])
        x = x.view(x.size(0), -1)   # torch.Size([1, 2048]) / torch.Size([1, 512])
        x = self.fc(x)      # torch.Size([1, 5])

        return x

def ResNet18():
    return ResNet(resnet18_params, BasicBlock)

def ResNet34():
    return ResNet(resnet34_params, BasicBlock)

def ResNet50():
    return ResNet(resnet50_params, Bottleneck)

def ResNet101():
    return ResNet(resnet101_params, Bottleneck)

def ResNet152():
    return ResNet(resnet152_params, Bottleneck)


if __name__=='__main__':
    # model = torchvision.models.resnet50()

    # 模型测试
    # model = ResNet18()
    # model = ResNet34()
    # model = ResNet50()
    # model = ResNet101()
    model = ResNet152()
    # print(model)

    input = torch.randn(1, 3, 224, 224)
    out = model(input)
    print(out.shape)

以上就是pytorch实现ResNet结构的实例代码的详细内容,更多关于pytorch ResNet结构的资料请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

pytorch实现ResNet结构的实例代码

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

pytorch如何实现ResNet结构

这篇文章主要介绍了pytorch如何实现ResNet结构,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。1.ResNet的创新现在重新稍微系统的介绍一下ResNet网络结构。
2023-06-15

利用Pytorch实现ResNet网络构建及模型训练

这篇文章主要为大家介绍了利用Pytorch实现ResNet网络构建及模型训练详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-05-17

Java中树的存储结构实现示例代码

一、树树与线性表、栈、队列等线性结构不同,树是一种非线性结构。一棵树只有一个根节点,如果一棵树有了多个根节点,那它已经不再是一棵树了,而是多棵树的集合,也被称为森林。二、树的父节点表示法树中除根节点之外每个节点都有一个父节点,为了记录树中节
2023-05-31

Python数据结构之顺序表的实现代码示例

顺序表即线性表的顺序存储结构。它是通过一组地址连续的存储单元对线性表中的数据进行存储的,相邻的两个元素在物理位置上也是相邻的。比如,第1个元素是存储在线性表的起始位置LOC(1),那么第i个元素即是存储在LOC(1)+(i-1)*sizeo
2022-06-04

Python 数据结构之堆栈实例代码

Python 堆栈 堆栈是一个后进先出(LIFO)的数据结构. 堆栈这个数据结构可以用于处理大部分具有后进先出的特性的程序流 . 在堆栈中, push 和 pop 是常用术语:push: 意思是把一个对象入栈.pop: 意思是把一个对象出
2022-06-04

spring security数据库表结构实例代码

PD建模图建模语句alter table SYS_AUTHORITIES_RESOURCES drop constraint FK_SYS_AUTH_REFERENCE_SYS_AUTH; alter table SYS_AUTHORI
2023-05-31

Python程序的分支结构实例代码分析

这篇文章主要讲解了“Python程序的分支结构实例代码分析”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Python程序的分支结构实例代码分析”吧!单分支结构:if 语句Python 中 i
2023-07-06

Java实现树形结构的代码怎么写

本篇内容介绍了“Java实现树形结构的代码怎么写”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!数据库表结构实现思路1、拿到有父子节点的集合数
2023-06-30

Redis数据结构类型实例代码分析

这篇“Redis数据结构类型实例代码分析”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“Redis数据结构类型实例代码分析”文
2023-07-05

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录