我的编程空间,编程开发者的网络收藏夹
学习永远不晚

PostgreSQL查询优化中对消除外连接的处理过程是什么

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

PostgreSQL查询优化中对消除外连接的处理过程是什么

本篇内容介绍了“PostgreSQL查询优化中对消除外连接的处理过程是什么”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!


使用的测试脚本:

drop table if exists t_null1;
create table t_null1(c1 int);
insert into t_null1 values(1);
insert into t_null1 values(2);
insert into t_null1 values(null);

drop table if exists t_null2;
create table t_null2(c1 int);
insert into t_null2 values(1);
insert into t_null2 values(null);

一、基本概念

消除外连接的代码注释说明如下:

 

有两种类型的外连接可以被消除,第一种是形如以下形式的语句:
SELECT ... FROM a LEFT JOIN b ON (...) WHERE b.y = 42;
这种语句如满足条件可变换为内连接(INNER_JOIN).
之所以可以变换为内连接,那是因为这样的语句与内连接处理的结果是一样的,原因是在Nullable-Side端(需要填充NULL值的一端),存在过滤条件保证这一端不可能是NULL值,比如IS NOT NULL/y = 42这类强(strict)过滤条件.

testdb=# explain verbose select * from t_null1 a left join t_null2 b on a.c1 = b.c1;
                                   QUERY PLAN                                   
--------------------------------------------------------------------------------
 Merge Left Join  (cost=359.57..860.00 rows=32512 width=8) -- 外连接
   Output: a.c1, b.c1
   Merge Cond: (a.c1 = b.c1)
   ->  Sort  (cost=179.78..186.16 rows=2550 width=4)
         Output: a.c1
         Sort Key: a.c1
         ->  Seq Scan on public.t_null1 a  (cost=0.00..35.50 rows=2550 width=4)
               Output: a.c1
   ->  Sort  (cost=179.78..186.16 rows=2550 width=4)
         Output: b.c1
         Sort Key: b.c1
         ->  Seq Scan on public.t_null2 b  (cost=0.00..35.50 rows=2550 width=4)
               Output: b.c1
(13 rows)

testdb=# explain verbose select * from t_null1 a left join t_null2 b on a.c1 = b.c1 where b.c1 = 1;
                                  QUERY PLAN                                  
------------------------------------------------------------------------------
 Nested Loop  (cost=0.00..85.89 rows=169 width=8) -- 外连接(Left关键字)已被消除
   Output: a.c1, b.c1
   ->  Seq Scan on public.t_null1 a  (cost=0.00..41.88 rows=13 width=4)
         Output: a.c1
         Filter: (a.c1 = 1)
   ->  Materialize  (cost=0.00..41.94 rows=13 width=4)
         Output: b.c1
         ->  Seq Scan on public.t_null2 b  (cost=0.00..41.88 rows=13 width=4)
               Output: b.c1
               Filter: (b.c1 = 1)
(10 rows)

第二种形如:
SELECT ... FROM a LEFT JOIN b ON (a.x = b.y) WHERE b.y IS NULL;
这种语句如满足条件可以变换为反半连接(ANTI-SEMIJOIN).
过滤条件已明确要求Nullable-Side端y IS NULL,如果连接条件是a.x = b.y这类严格(strict)的条件,那么这样的外连接与反半连接的结果是一样的.

testdb=# explain verbose select * from t_null1 a left join t_null2 b on a.c1 = b.c1 where b.c1 is null;
                                   QUERY PLAN                                   
--------------------------------------------------------------------------------
 Hash Anti Join  (cost=67.38..152.44 rows=1275 width=8) -- 变换为反连接
   Output: a.c1, b.c1
   Hash Cond: (a.c1 = b.c1)
   ->  Seq Scan on public.t_null1 a  (cost=0.00..35.50 rows=2550 width=4)
         Output: a.c1
   ->  Hash  (cost=35.50..35.50 rows=2550 width=4)
         Output: b.c1
         ->  Seq Scan on public.t_null2 b  (cost=0.00..35.50 rows=2550 width=4)
               Output: b.c1
(9 rows)

值得一提的是,在PG中,形如SELECT ... FROM a LEFT JOIN b ON (...) WHERE b.y = 42;这样的SQL语句,WHERE b.y = 42这类条件可以视为连接的上层过滤条件,在查询树中,Jointree->fromlist(元素类型为JoinExpr)与Jointree->quals处于同一层次,由于JoinExpr中的quals为同层条件,因此其上层即为Jointree->quals.有兴趣的可以查看日志输出查看Query查询树结构.

二、源码解读

消除外连接的代码在主函数subquery_planner中,通过调用reduce_outer_joins函数实现,代码片段如下:

     
     if (hasOuterJoins)
         reduce_outer_joins(root);

reduce_outer_joins


相关的数据结构和依赖的子函数:
reduce_outer_joins_state

 typedef struct reduce_outer_joins_state
 {
     Relids      relids;         
     bool        contains_outer; 
     List       *sub_states;     
 } reduce_outer_joins_state;

BitmapXX

 typedef struct Bitmapset
 {
     int         nwords;         
     bitmapword  words[FLEXIBLE_ARRAY_MEMBER];   
 } Bitmapset;
 
 #define WORDNUM(x)  ((x) / BITS_PER_BITMAPWORD)
 #define BITNUM(x)   ((x) % BITS_PER_BITMAPWORD)
 
 #define BITS_PER_BITMAPWORD 32
 typedef uint32 bitmapword; 


 
 Bitmapset *
 bms_make_singleton(int x)
 {
     Bitmapset  *result;
     int         wordnum,
                 bitnum;
 
     if (x < 0)
         elog(ERROR, "negative bitmapset member not allowed");
     wordnum = WORDNUM(x);
     bitnum = BITNUM(x);
     result = (Bitmapset *) palloc0(BITMAPSET_SIZE(wordnum + 1));
     result->nwords = wordnum + 1;
     result->words[wordnum] = ((bitmapword) 1 << bitnum);
     return result;
 }


 
 Bitmapset *
 bms_add_member(Bitmapset *a, int x)
 {
     int         wordnum,
                 bitnum;
 
     if (x < 0)
         elog(ERROR, "negative bitmapset member not allowed");
     if (a == NULL)
         return bms_make_singleton(x);
     wordnum = WORDNUM(x);
     bitnum = BITNUM(x);
 
     
     if (wordnum >= a->nwords)
     {
         int         oldnwords = a->nwords;
         int         i;
 
         a = (Bitmapset *) repalloc(a, BITMAPSET_SIZE(wordnum + 1));
         a->nwords = wordnum + 1;
         
         for (i = oldnwords; i < a->nwords; i++)
             a->words[i] = 0;
     }
 
     a->words[wordnum] |= ((bitmapword) 1 << bitnum);
     return a;
 }

find_nonnullable_rels

 
 Relids
 find_nonnullable_rels(Node *clause)
 {
     return find_nonnullable_rels_walker(clause, true);
 }
 
 static Relids
 find_nonnullable_rels_walker(Node *node, bool top_level)
 {
     Relids      result = NULL;
     ListCell   *l;
 
     if (node == NULL)
         return NULL;
     if (IsA(node, Var))
     {
         Var        *var = (Var *) node;
 
         if (var->varlevelsup == 0)
             result = bms_make_singleton(var->varno);
     }
     else if (IsA(node, List))
     {
         
         foreach(l, (List *) node)
         {
             result = bms_join(result,
                               find_nonnullable_rels_walker(lfirst(l),
                                                            top_level));
         }
     }
     else if (IsA(node, FuncExpr))
     {
         FuncExpr   *expr = (FuncExpr *) node;
 
         if (func_strict(expr->funcid))
             result = find_nonnullable_rels_walker((Node *) expr->args, false);
     }
     else if (IsA(node, OpExpr))
     {
         OpExpr     *expr = (OpExpr *) node;
 
         set_opfuncid(expr);
         if (func_strict(expr->opfuncid))
             result = find_nonnullable_rels_walker((Node *) expr->args, false);
     }
     else if (IsA(node, ScalarArrayOpExpr))
     {
         ScalarArrayOpExpr *expr = (ScalarArrayOpExpr *) node;
 
         if (is_strict_saop(expr, true))
             result = find_nonnullable_rels_walker((Node *) expr->args, false);
     }
     else if (IsA(node, BoolExpr))
     {
         BoolExpr   *expr = (BoolExpr *) node;
 
         switch (expr->boolop)
         {
             case AND_EXPR:
                 
                 if (top_level)
                 {
                     result = find_nonnullable_rels_walker((Node *) expr->args,
                                                           top_level);
                     break;
                 }
 
                 
                 
             case OR_EXPR:
 
                 
                 foreach(l, expr->args)
                 {
                     Relids      subresult;
 
                     subresult = find_nonnullable_rels_walker(lfirst(l),
                                                              top_level);
                     if (result == NULL) 
                         result = subresult;
                     else
                         result = bms_int_members(result, subresult);
 
                     
                     if (bms_is_empty(result))
                         break;
                 }
                 break;
             case NOT_EXPR:
                 
                 result = find_nonnullable_rels_walker((Node *) expr->args,
                                                       false);
                 break;
             default:
                 elog(ERROR, "unrecognized boolop: %d", (int) expr->boolop);
                 break;
         }
     }
     else if (IsA(node, RelabelType))
     {
         RelabelType *expr = (RelabelType *) node;
 
         result = find_nonnullable_rels_walker((Node *) expr->arg, top_level);
     }
     else if (IsA(node, CoerceViaIO))
     {
         
         CoerceViaIO *expr = (CoerceViaIO *) node;
 
         result = find_nonnullable_rels_walker((Node *) expr->arg, top_level);
     }
     else if (IsA(node, ArrayCoerceExpr))
     {
         
         ArrayCoerceExpr *expr = (ArrayCoerceExpr *) node;
 
         result = find_nonnullable_rels_walker((Node *) expr->arg, top_level);
     }
     else if (IsA(node, ConvertRowtypeExpr))
     {
         
         ConvertRowtypeExpr *expr = (ConvertRowtypeExpr *) node;
 
         result = find_nonnullable_rels_walker((Node *) expr->arg, top_level);
     }
     else if (IsA(node, CollateExpr))
     {
         CollateExpr *expr = (CollateExpr *) node;
 
         result = find_nonnullable_rels_walker((Node *) expr->arg, top_level);
     }
     else if (IsA(node, NullTest))
     {
         
         NullTest   *expr = (NullTest *) node;
 
         if (top_level && expr->nulltesttype == IS_NOT_NULL && !expr->argisrow)
             result = find_nonnullable_rels_walker((Node *) expr->arg, false);
     }
     else if (IsA(node, BooleanTest))
     {
         
         BooleanTest *expr = (BooleanTest *) node;
 
         if (top_level &&
             (expr->booltesttype == IS_TRUE ||
              expr->booltesttype == IS_FALSE ||
              expr->booltesttype == IS_NOT_UNKNOWN))
             result = find_nonnullable_rels_walker((Node *) expr->arg, false);
     }
     else if (IsA(node, PlaceHolderVar))
     {
         PlaceHolderVar *phv = (PlaceHolderVar *) node;
 
         result = find_nonnullable_rels_walker((Node *) phv->phexpr, top_level);
     }
     return result;
 }

三、跟踪分析

外连接->内连接
测试脚本:

select * 
from t_null1 a left join t_null2 b on a.c1 = b.c1 
where b.c1 = 1;

gdb跟踪:

(gdb) b reduce_outer_joins
Breakpoint 1 at 0x77faf5: file prepjointree.c, line 2484.
(gdb) c
Continuing.

Breakpoint 1, reduce_outer_joins (root=0x2eafa98) at prepjointree.c:2484
2484    state = reduce_outer_joins_pass1((Node *) root->parse->jointree);

(gdb) b reduce_outer_joins
Breakpoint 1 at 0x77faf5: file prepjointree.c, line 2484.
...
#进入reduce_outer_joins_pass1
(gdb) step
reduce_outer_joins_pass1 (jtnode=0x2ea4af8) at prepjointree.c:2504
...
(gdb) p *f
$2 = {type = T_FromExpr, fromlist = 0x2ea4668, quals = 0x2edcae8}
#进入FromExpr分支
(gdb) n
2527        sub_state = reduce_outer_joins_pass1(lfirst(l));
##递归调用
(gdb) step
reduce_outer_joins_pass1 (jtnode=0x2dd40f0) at prepjointree.c:2504
2504    result = (reduce_outer_joins_state *)
##进入JoinExpr分支
2534    else if (IsA(jtnode, JoinExpr))
(gdb) 
2536      JoinExpr   *j = (JoinExpr *) jtnode;
(gdb) p *j
$3 = {type = T_JoinExpr, jointype = JOIN_LEFT, isNatural = false, larg = 0x2dd49e0, rarg = 0x2dd4c68, usingClause = 0x0, 
  quals = 0x2edc828, alias = 0x0, rtindex = 3}
###递归调用
2543      sub_state = reduce_outer_joins_pass1(j->larg);
(gdb) step
reduce_outer_joins_pass1 (jtnode=0x2dd49e0) at prepjointree.c:2504
2504    result = (reduce_outer_joins_state *)
###进入RangeTblRef分支
2512    if (IsA(jtnode, RangeTblRef))
(gdb) 
2514      int     varno = ((RangeTblRef *) jtnode)->rtindex;
...
###JoinExpr处理完毕
2549      sub_state = reduce_outer_joins_pass1(j->rarg);
(gdb) 
2551                       sub_state->relids);
(gdb) 
2550      result->relids = bms_add_members(result->relids,
(gdb) 
2552      result->contains_outer |= sub_state->contains_outer;
(gdb) 
2553      result->sub_states = lappend(result->sub_states, sub_state);
(gdb) 
2558    return result;
(gdb) p *result
$12 = {relids = 0x2ea61e8, contains_outer = true, sub_states = 0x2edcbc8}
(gdb) p *result->relids
$13 = {nwords = 1, words = 0x2ea61ec}
(gdb) p *result->sub_states
$14 = {type = T_List, length = 2, head = 0x2edcba8, tail = 0x2edcc40}
(gdb) n
2559  }
(gdb) 
##回到FromExpr
...
2523      foreach(l, f->fromlist)
(gdb) p *result
$18 = {relids = 0x2edcc60, contains_outer = true, sub_states = 0x2edcc98}
#回到reduce_outer_joins
reduce_outer_joins (root=0x2eafa98) at prepjointree.c:2487
2487    if (state == NULL || !state->contains_outer)
(gdb) p *state
$21 = {relids = 0x2edcc60, contains_outer = true, sub_states = 0x2edcc98}
(gdb) p *state->relids[0]->words
$30 = 6 -->Relids,1 & 2,即1<<1 | 1 << 2
#进入reduce_outer_joins_pass2
(gdb) step
reduce_outer_joins_pass2 (jtnode=0x2ea4af8, state=0x2edcb18, root=0x2eafa98, nonnullable_rels=0x0, nonnullable_vars=0x0, 
    forced_null_vars=0x0) at prepjointree.c:2583
2583    if (jtnode == NULL)
...
#进入FromExpr分支
2587    else if (IsA(jtnode, FromExpr))
(gdb) 
2589      FromExpr   *f = (FromExpr *) jtnode;
...
#寻找FromExpr中存在过滤条件为NOT NULL的Relids
(gdb) n
2597      pass_nonnullable_rels = find_nonnullable_rels(f->quals);
(gdb) 
2598      pass_nonnullable_rels = bms_add_members(pass_nonnullable_rels,
(gdb) p pass_nonnullable_rels->words[0]
$34 = 4 -- rtindex = 2的Relid
#寻找NOT NULL's Vars
2601      pass_nonnullable_vars = find_nonnullable_vars(f->quals);
(gdb) 
2602      pass_nonnullable_vars = list_concat(pass_nonnullable_vars,
(gdb) 
2604      pass_forced_null_vars = find_forced_null_vars(f->quals);
(gdb) p *pass_nonnullable_vars
$35 = {type = T_List, length = 1, head = 0x2edcce0, tail = 0x2edcce0}
(gdb) p *(Node *)pass_nonnullable_vars->head->data.ptr_value
$36 = {type = T_Var}
(gdb) p *(Var *)pass_nonnullable_vars->head->data.ptr_value
$37 = {xpr = {type = T_Var}, varno = 2, varattno = 1, vartype = 23, vartypmod = -1, varcollid = 0, varlevelsup = 0, 
  varnoold = 2, varoattno = 1, location = 65} -- rtindex=2的RTE,属性编号为1的字段
##递归调用reduce_outer_joins_pass2
(gdb) 
2614          reduce_outer_joins_pass2(lfirst(l), sub_state, root,
(gdb) step
reduce_outer_joins_pass2 (jtnode=0x2dd40f0, state=0x2edcb48, root=0x2eafa98, nonnullable_rels=0x2edccc8, 
    nonnullable_vars=0x2edcd00, forced_null_vars=0x0) at prepjointree.c:2583
2583    if (jtnode == NULL)
##进入JoinExpr分支
2622    else if (IsA(jtnode, JoinExpr))
(gdb) 
2624      JoinExpr   *j = (JoinExpr *) jtnode;
...
(gdb) p *right_state->relids[0]->words
$44 = 4 -->2号RTE
(gdb) p *left_state->relids[0]->words
$45 = 2 -->1号RTE
(gdb) p rtindex
$46 = 3 -->Jointree整体作为3号RTE存在
...
2633      switch (jointype)
(gdb) 
2638          if (bms_overlap(nonnullable_rels, right_state->relids))
(gdb) p *nonnullable_rels->words
$49 = 4 -->2号RTE
(gdb) p right_state->relids->words[0]
$50 = 4 -->2号RTE
##转换为内连接
(gdb) n
2639            jointype = JOIN_INNER;
...
##修改RTE的连接类型
(gdb) 
2724      if (rtindex && jointype != j->jointype)
(gdb)
2726        RangeTblEntry *rte = rt_fetch(rtindex, root->parse->rtable);
(gdb) 
2730        rte->jointype = jointype;
(gdb) p *rte
$54 = {type = T_RangeTblEntry, rtekind = RTE_JOIN, relid = 0, relkind = 0 '\000', tablesample = 0x0, subquery = 0x0, 
  security_barrier = false, jointype = JOIN_LEFT, joinaliasvars = 0x0, functions = 0x0, funcordinality = false, 
  tablefunc = 0x0, values_lists = 0x0, ctename = 0x0, ctelevelsup = 0, self_reference = false, coltypes = 0x0, 
  coltypmods = 0x0, colcollations = 0x0, enrname = 0x0, enrtuples = 0, alias = 0x0, eref = 0x2ea4498, lateral = false, 
  inh = false, inFromCl = true, requiredPerms = 2, checkAsUser = 0, selectedCols = 0x0, insertedCols = 0x0, 
  updatedCols = 0x0, securityQuals = 0x0}
(gdb) n
2732      j->jointype = jointype;
...
#回到上层的reduce_outer_joins_pass2
(gdb) 
reduce_outer_joins_pass2 (jtnode=0x2ea4af8, state=0x2edcb18, root=0x2eafa98, nonnullable_rels=0x0, nonnullable_vars=0x0, 
    forced_null_vars=0x0) at prepjointree.c:2609
2609      forboth(l, f->fromlist, s, state->sub_states)
#回到主函数reduce_outer_joins
2844  }
(gdb) 
reduce_outer_joins (root=0x2eafa98) at prepjointree.c:2492
2492  }
(gdb) 
#DONE!

外连接->反连接
测试脚本:

select * 
from t_null1 a left join t_null2 b on a.c1 = b.c1 
where b.c1 is null;

gdb跟踪,与转换为内连接不同的地方在于reduce_outer_joins_pass2函数中find_forced_null_vars在这里是可以找到相应的Vars的:

(gdb) b prepjointree.c:2702
Breakpoint 3 at 0x78023c: file prepjointree.c, line 2702.
(gdb) c
Continuing.

Breakpoint 3, reduce_outer_joins_pass2 (jtnode=0x2dd40f0, state=0x2edc9b8, root=0x2eafa98, nonnullable_rels=0x0, 
    nonnullable_vars=0x0, forced_null_vars=0x2edcb70) at prepjointree.c:2703
2703      if (jointype == JOIN_LEFT)
#尝试转换为内连接,但不成功,仍为左连接
2707        local_nonnullable_vars = find_nonnullable_vars(j->quals);
(gdb) 
2708        computed_local_nonnullable_vars = true;
(gdb) p *local_nonnullable_vars
$56 = {type = T_List, length = 2, head = 0x2edcba0, tail = 0x2edcbf0}
(gdb) p *(Var *)local_nonnullable_vars->head->data.ptr_value
$57 = {xpr = {type = T_Var}, varno = 1, varattno = 1, vartype = 23, vartypmod = -1, varcollid = 0, varlevelsup = 0, 
  varnoold = 1, varoattno = 1, location = 47}
(gdb) p *(Var *)local_nonnullable_vars->head->next->data.ptr_value
$58 = {xpr = {type = T_Var}, varno = 2, varattno = 1, vartype = 23, vartypmod = -1, varcollid = 0, varlevelsup = 0, 
  varnoold = 2, varoattno = 1, location = 54}
(gdb) p *(Var *)forced_null_vars->head->data.ptr_value
$61 = {xpr = {type = T_Var}, varno = 2, varattno = 1, vartype = 23, vartypmod = -1, varcollid = 0, varlevelsup = 0, 
  varnoold = 2, varoattno = 1, location = 65}
(gdb) p *(Var *)overlap->head->data.ptr_value
$63 = {xpr = {type = T_Var}, varno = 2, varattno = 1, vartype = 23, vartypmod = -1, varcollid = 0, varlevelsup = 0, 
  varnoold = 2, varoattno = 1, location = 54}
...
#转换为反连接
2717        if (overlap != NIL &&
(gdb) 
2720          jointype = JOIN_ANTI;
(gdb) c
Continuing.

“PostgreSQL查询优化中对消除外连接的处理过程是什么”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注亿速云网站,小编将为大家输出更多高质量的实用文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

PostgreSQL查询优化中对消除外连接的处理过程是什么

下载Word文档到电脑,方便收藏和打印~

下载Word文档

编程热搜

目录