我的编程空间,编程开发者的网络收藏夹
学习永远不晚

R2决定系数(R2 得分)详细计算

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

R2决定系数(R2 得分)详细计算

定义

      R2决定系数是对线性模型评估的一种评价指标,其值最大为1,最小为0,当值越接近于1,则说明模型越好;值越接近于0,则模型越差。

计算过程

使用 y i {\text{y}}_i yi表示真实的观测值,使用 y _ \overset{\_}{\mathop y} y_表示真实观测值的平均值,使用 y i ^ \overset{\hat{}}{\mathop {y_i}} yi^表示预测值,于是就产生下以下的指标:

  • 回归平方和(SSR)
    S S R = ∑ i = 1 n ( y i ^ − y − ) 2 SSR = \sum\limits_{i = 1}^n {(\overset{\hat{}}{\mathop {{y_i}}} - \overset{ - }{\mathop y} } {)^2} SSR=i=1n(yi^y)2估计值与平均值的误差,反映自变量与因变量之间的相关程度的偏差平方和

  • 残差平方和(SSE)
    S S E = ∑ i = 1 n ( y i − y i ^ ) 2 SSE = \sum\limits_{i = 1}^n {(\overset{{}}{\mathop {{y_i}}} - \overset{\hat{}}{\mathop {{y_i}}} } {)^2} SSE=i=1n(yiyi^)2即估计值与真实值的误差,反映模型拟合程度

  • 总离差平方和(SST)
    S S T = S S R + S S E = ∑ i = 1 n ( y i − y _ ) 2 SST = SSR + SSE = \sum\limits_{i = 1}^n {(\overset{{}}{\mathop {{y_i}}} - \overset{\_}{\mathop {{y_{}}}} } {)^2} SST=SSR+SSE=i=1n(yiy_)2即平均值和真实值之间的误差,反映与数学期望的偏离程度

  • R2 score ,即决定系数
    反映因变量的全部变异能通过回归关系被变量解释的比例,计算公式:
    R 2 = 1 − S S E SST {R^2} = 1 - \frac{{SSE}}{{{\text{SST}}}} R2=1SSTSSE R 2 = 1 − ∑ i = 1 n ( y i − y i ^ ) 2 ∑ i = 1 n ( y i − y _ ) 2 {R^2} = 1 - \frac{{\sum\nolimits_{i = 1}^n {{{({y_i} - \overset{\hat{}}{\mathop {{y_i}}} )}^2}} }}{{\sum\nolimits_{i = 1}^n {{{({y_i} - \overset{\_}{\mathop {{y_{}}}} )}^2}} }} R2=1i=1n(yiy_)2i=1n(yiyi^)2进一步化简为:
    R 2 = 1 − ∑ i ( y i − y^ i ) 2 / n ∑ i ( y i − y _) 2 / n = 1 − M S E V a r {R^2} = 1 - \frac{{\sum\limits_i {{{({y_i} - {{\overset{\hat {}}{\mathop y} }_i})}^2}/n} }}{{\sum\limits_i {{{({y_i} - \overset{\_}{\mathop y} )}^2}/n} }} = 1 - \frac{{MSE}}{{Var}} R2=1i(yiy_)2/ni(yiy^i)2/n=1VarMSE如此一来,分子就变成了常用的评价指标,均方误差MSE,分母则变成了方差,对于 R 2 {R^2} R2
           可以通俗的理解为使用均值作为误差基准,看预测误差是否大于或者小于均值基准误差
    若:
           R2 score = 1,样本中预测值和真实值完全相等,没有任何误差,表示回归分析中自变量对因变量的解释越好
           R2 score = 0,此时分子等于分母,样本的每项预测值都等于均值

最后,是sklearn中的有关于模型评估的几个API:

import sklearn.metrics as sm  # 模型评估模块# 拿到一组测试集模型进行模型评估test_x = 测试变量数据集test_y = 测试结果数据集# 训练的模型,获取模型预测值pred_test_y=model.predict(test_x)# 平均绝对值误差 maeprint(sm.mean_absolute_error(test_y, pred_test_y))# 平均平方误差:均方误差 mseprint(sm.mean_squared_error(test_y, pred_test_y))# 中位数绝对偏差print(sm.median_absolute_error(test_y, pred_test_y))# r2_scoreprint(sm.r2_score(test_y,pred_test_y))

如有错误请联系作者改正,谢谢!

来源地址:https://blog.csdn.net/qq_45355712/article/details/129195716

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

R2决定系数(R2 得分)详细计算

下载Word文档到电脑,方便收藏和打印~

下载Word文档

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录