我的编程空间,编程开发者的网络收藏夹
学习永远不晚

C++实现LeetCode(145.二叉树的后序遍历)

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

C++实现LeetCode(145.二叉树的后序遍历)

[LeetCode] 145. Binary Tree Postorder Traversal 二叉树的后序遍历

Given a binary tree, return the postorder traversal of its nodes' values.

For example:
Given binary tree {1,#,2,3},

   1
\
2
/
3

return [3,2,1].

Note: Recursive solution is trivial, could you do it iteratively?

经典题目,求二叉树的后序遍历的非递归方法,跟前序,中序,层序一样都需要用到栈,后序的顺序是左-右-根,所以当一个结点值被取出来时,它的左右子结点要么不存在,要么已经被访问过了。先将根结点压入栈,然后定义一个辅助结点 head,while 循环的条件是栈不为空,在循环中,首先将栈顶结点t取出来,如果栈顶结点没有左右子结点,或者其左子结点是 head,或者其右子结点是 head 的情况下。将栈顶结点值加入结果 res 中,并将栈顶元素移出栈,然后将 head 指向栈顶元素;否则的话就看如果右子结点不为空,将其加入栈,再看左子结点不为空的话,就加入栈,注意这里先右后左的顺序是因为栈的后入先出的特点,可以使得左子结点先被处理。下面来看为什么是这三个条件呢,首先如果栈顶元素如果没有左右子结点的话,说明其是叶结点,而且入栈顺序保证了左子结点先被处理,所以此时的结点值就可以直接加入结果 res 了,然后移出栈,将 head 指向这个叶结点,这样的话 head 每次就是指向前一个处理过并且加入结果 res 的结点,那么如果栈顶结点的左子结点或者右子结点是 head 的话,说明其子结点已经加入结果 res 了,那么就可以处理当前结点了。

看到这里,大家可能对 head 的作用,以及为何要初始化为 root,还不是很清楚,这里再解释一下。head 是指向上一个被遍历完成的结点,由于后序遍历的顺序是左-右-根,所以一定会一直将结点压入栈,一直到把最左子结点(或是最左子结点的最右子结点)压入栈后,开始进行处理。一旦开始处理了,head 就会被重新赋值。所以 head 初始化值并没有太大的影响,唯一要注意的是不能初始化为空,因为在判断是否打印出当前结点时除了判断是否是叶结点,还要看 head 是否指向其左右子结点,如果 head 指向左子结点,那么右子结点一定为空,因为入栈顺序是根-右-左,不存在右子结点还没处理,就直接去处理根结点了的情况。若 head 指向右子结点,则是正常的左-右-根的处理顺序。那么回过头来在看,若 head 初始化为空,且此时正好左子结点不存在,那么在压入根结点时,head 和左子结点相等就成立了,此时就直接打印根结点了,明显是错的。所以 head 只要不初始化为空,一切都好说,甚至可以新建一个结点也没问题。将 head 初始化为 root,也可以,就算只有一个 root 结点,那么在判定叶结点时就将 root 打印了,然后就跳出 while 循环了,也不会出错。代码如下:

解法一:


class Solution {
public:
    vector<int> postorderTraversal(TreeNode* root) {
        if (!root) return {};
        vector<int> res;
        stack<TreeNode*> s{{root}};
        TreeNode *head = root;
        while (!s.empty()) {
            TreeNode *t = s.top();
            if ((!t->left && !t->right) || t->left == head || t->right == head) {
                res.push_back(t->val);
                s.pop();
                head = t;
            } else {
                if (t->right) s.push(t->right);
                if (t->left) s.push(t->left);
            }
        }
        return res;
    }
};

由于后序遍历的顺序是左-右-根,而先序遍历的顺序是根-左-右,二者其实还是很相近的,可以先在先序遍历的方法上做些小改动,使其遍历顺序变为根-右-左,然后翻转一下,就是左-右-根啦,翻转的方法我们使用反向Q,哦不,是反向加入结果 res,每次都在结果 res 的开头加入结点值,而改变先序遍历的顺序就只要该遍历一下入栈顺序,先左后右,这样出栈处理的时候就是先右后左啦,参见代码如下:

解法二:


class Solution {
public:
    vector<int> postorderTraversal(TreeNode* root) {
        if (!root) return {};
        vector<int> res;
        stack<TreeNode*> s{{root}};
        while (!s.empty()) {
            TreeNode *t = s.top(); s.pop();
            res.insert(res.begin(), t->val);
            if (t->left) s.push(t->left);
            if (t->right) s.push(t->right);
        }
        return res;
    }
};

那么在 Binary Tree Preorder Traversal 中的解法二也可以改动一下变成后序遍历,改动的思路跟上面的解法一样,都是先将先序遍历的根-左-右顺序变为根-右-左,再翻转变为后序遍历的左-右-根,翻转还是改变结果 res 的加入顺序,然后把更新辅助结点p的左右顺序换一下即可,代码如下:

解法三:


class Solution {
public:
    vector<int> postorderTraversal(TreeNode* root) {
        vector<int> res;
        stack<TreeNode*> s;
        TreeNode *p = root;
        while (!s.empty() || p) {
            if (p) {
                s.push(p);
                res.insert(res.begin(), p->val);
                p = p->right;
            } else {
                TreeNode *t = s.top(); s.pop();
                p = t->left;
            }
        }
        return res;
    }
};

论坛上还有一种双栈的解法,其实本质上跟解法二没什么区别,都是利用了改变先序遍历的顺序来实现后序遍历的,参见代码如下:

解法四:


class Solution {
public:
    vector<int> postorderTraversal(TreeNode* root) {
        if (!root) return {};
        vector<int> res;
        stack<TreeNode*> s1, s2;
        s1.push(root);
        while (!s1.empty()) {
            TreeNode *t = s1.top(); s1.pop();
            s2.push(t);
            if (t->left) s1.push(t->left);
            if (t->right) s1.push(t->right);
        }
        while (!s2.empty()) {
            res.push_back(s2.top()->val); s2.pop();
        }
        return res;
    }
};

到此这篇关于C++实现LeetCode(145.二叉树的后序遍历)的文章就介绍到这了,更多相关C++实现二叉树的后序遍历内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

C++实现LeetCode(145.二叉树的后序遍历)

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

C++怎么实现二叉树的后序遍历

这篇文章主要介绍“C++怎么实现二叉树的后序遍历”,在日常操作中,相信很多人在C++怎么实现二叉树的后序遍历问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”C++怎么实现二叉树的后序遍历”的疑惑有所帮助!接下来
2023-06-20

用C++实现二叉树层序遍历

这篇文章主要讲解了“用C++实现二叉树层序遍历”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“用C++实现二叉树层序遍历”吧!二叉树层序遍历从底部层序遍历其实还是从顶部开始遍历,只不过最后存储
2023-06-20

C语言中如何实现二叉树的后序遍历

小编给大家分享一下C语言中如何实现二叉树的后序遍历,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!首先我们从两个方面讲解二叉树的后序遍历(递归+迭代)一.二叉树的后序遍历.(递归)思想:首先我们从二叉树的根节点开始先遍历其左
2023-06-29

C++怎么实现二叉树层序遍历

本篇内容主要讲解“C++怎么实现二叉树层序遍历”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“C++怎么实现二叉树层序遍历”吧!二叉树层序遍历Given a binary tree, return
2023-06-20

C++实现二叉树层序遍历的方法

今天小编给大家分享一下C++实现二叉树层序遍历的方法的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。二叉树层序遍历Given
2023-06-19

JavaScript实现二叉树层序遍历

这篇文章主要为大家简单介绍一下JS中如何实现二叉树层序遍历,感兴趣的小伙伴可以详细参考阅读
2023-05-14

C++如何实现二叉树的遍历

本篇内容介绍了“C++如何实现二叉树的遍历”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!二叉树的遍历Q:什么是二叉树的遍历?A:二叉树的遍历
2023-06-30

C++非递归如何实现二叉树的前中后序遍历

小编给大家分享一下C++非递归如何实现二叉树的前中后序遍历,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!二叉树的前序遍历在不使用递归的方式遍历二叉树时,我们可以使
2023-06-21

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录