我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python中的collections集合与typing数据类型模块

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python中的collections集合与typing数据类型模块

一、collections集合

collections是Python内建的一个集合模块,提供了许多有用的集合类。

1、namedtuple:命名tuple对象

namedtuple是一个函数,它用来创建一个自定义的tuple对象,并且规定了tuple元素的个数,并可以用属性而不是索引来引用tuple的某个元素。

namedtuple('名称', [属性list])

这样一来,我们用namedtuple可以很方便地定义一种数据类型,它具备tuple的不变性,又可以根据属性来引用,使用十分方便。

我们知道tuple可以表示不变集合,例如,一个点的二维坐标就可以表示成:

p = (1,2)

但是,看到(1, 2),很难看出这个tuple是用来表示一个坐标的。

定义一个class又小题大做了,这时,namedtuple就派上了用场:

from collections import namedtuple
Point = namedtuple('Point', ['x', 'y'])
p = Point(1, 2)
p.x # 1
p.y #2

可以验证创建的Point对象是tuple的一种子类:

isinstance(p, Point) #True
isinstance(p, tuple) #True

类似的,如果要用坐标和半径表示一个圆,也可以用namedtuple定义:

Circle = namedtuple('Circle', ['x', 'y', 'r'])

2、deque:双端队列

使用list存储数据时,按索引访问元素很快,但是插入和删除元素就很慢了,因为list是线性存储,数据量大的时候,插入和删除效率很低。

deque是为了高效实现插入和删除操作的双向列表,适合用于队列和栈:

deque除了实现list的append()和pop()外,还支持appendleft()和popleft(),这样就可以非常高效地往头部添加或删除元素。

from collections import deque
q = deque(['a', 'b', 'c'])
q.append('x')
q.appendleft('y')
q
#deque(['y', 'a', 'b', 'c', 'x'])

3、defaultdict:默认字典

使用dict时,如果引用的Key不存在,就会抛出KeyError。如果希望key不存在时,返回一个默认值,就可以用defaultdict。

注意默认值是调用函数返回的,而函数在创建defaultdict对象时传入。

除了在Key不存在时返回默认值,defaultdict的其他行为跟dict是完全一样的。

from collections import defaultdict
dd = defaultdict(lambda: 'N/A')
dd['key1'] = 'abc'
dd['key1'] # key1存在
#'abc'
dd['key2'] # key2不存在,返回默认值
#'N/A'

4、OrderedDict:顺序字典

使用dict时,Key是无序的。在对dict做迭代时,我们无法确定Key的顺序。

如果要保持Key的顺序,可以用OrderedDict:

from collections import OrderedDict
d = dict([('a', 1), ('b', 2), ('c', 3)])
d # dict的Key是无序的
#{'a': 1, 'b': 2, 'c': 3}
od = OrderedDict([('a', 1), ('b', 2), ('c', 3)])
od # OrderedDict的Key是有序的
#OrderedDict([('a', 1), ('b', 2), ('c', 3)])

注意,OrderedDict的Key会按照插入的顺序排列,不是Key本身排序:

od = OrderedDict()
od['z'] = 1
od['y'] = 2
od['x'] = 3
od.keys() # 按照插入的Key的顺序返回
#odict_keys(['z', 'y', 'x'])

OrderedDict可以实现一个FIFO(先进先出)的dict,当容量超出限制时,先删除最早添加的Key:

from collections import OrderedDict

class LastUpdatedOrderedDict(OrderedDict):

    def __init__(self, capacity):
        super(LastUpdatedOrderedDict, self).__init__()
        self._capacity = capacity

    def __setitem__(self, key, value):
        containsKey = 1 if key in self else 0
        if len(self) - containsKey >= self._capacity:
            last = self.popitem(last=False)
            print('remove:', last)
        if containsKey:
            del self[key]
            print('set:', (key, value))
        else:
            print('add:', (key, value))
        OrderedDict.__setitem__(self, key, value)

5、Counter:计数器

Counter是一个简单的计数器.

Counter实际上也是dict的一个子类,下面的结果可以看出,字符'g'、'm'、'r'各出现了两次,其他字符各出现了一次。

例如,统计字符出现的个数:

from collections import Counter
c = Counter()
for ch in 'programming':
    c[ch] = c[ch] + 1
print(c)
#Counter({'p': 1, 'r': 2, 'o': 1, 'g': 2, 'a': 1, 'm': 2, 'i': 1, 'n': 1})

二、typing模块

1、typing模块的作用

  • 类型检查,防止运行时出现参数和返回值类型不符合。
  • 作为开发文档附加说明,方便使用者调用时传入和返回参数类型。
  • 该模块加入后并不会影响程序的运行,不会报正式的错误,只有提醒。
  • 注意:typing模块只有在python3.5以上的版本中才可以使用,pycharm目前支持typing检查。

2、使用typing模块

  • 在传入参数时通过"参数名:类型"的形式声明参数的类型;
  • 返回结果通过"-> 结果类型"的形式声明结果的类型。

在调用的时候如果参数的类型不正确pycharm会有提醒,但不会影响程序的运行。

from typing import List, Tuple, Dict


def add(a: int, c: str, d: float,  b: bool) -> Tuple[List, Tuple, Dict, bool]:
    list1 = list(range(a))
    tup = (c, c, c)
    d = {"a": d}
    bl = b
    return list1, tup, d, bl


print(add(5, "hhhh", 2.3, False))
# ([0, 1, 2, 3, 4], ('hhhh', 'hhhh', 'hhhh'), {'a': 2.3}, False)

对于如list列表等,还可以规定得更加具体一些。如:"-> List[str]”,规定返回的是列表,并且元素是字符串。

from typing import List


def func(a: int, b: str)   –>  List[int or str] :  # 使用or关键字表示多种类型
    list1 = []
    list1.append(a)
    list1.append(b)
    return list1

4、typing常用类型

  • int、long、float: 整型、长整形、浮点型
  • bool、str: 布尔型、字符串类型
  • List、 Tuple、 Dict、 Set:列表、元组、字典、集合
  • Iterable、Iterator:可迭代类型、迭代器类型
  • Generator:生成器类型

到此这篇关于Python集合collections、数据类型typing模块的文章就介绍到这了。希望对大家的学习有所帮助,也希望大家多多支持编程网。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python中的collections集合与typing数据类型模块

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

简介Python的collections模块中defaultdict类型的用法

defaultdict 主要用来需要对 value 做初始化的情形。对于字典来说,key 必须是 hashable,immutable,unique 的数据,而 value 可以是任意的数据类型。如果 value 是 list,dict 等
2022-06-04

python基本数据类型(四)-集合与运

1.集合2.字典3.运算符优先级1.集合创建:() set() 注意:创建空的集合要用set()特点:元素唯一,无序运算: &(交集) |(并集) -(差集)方法:s.add(x) #添加单个元素s.update()
2023-01-31

Apache Cassandra 中的集合数据类型

ApacheCassandra集合数据类型存储复杂数据结构的灵活性,允许创建列表、集合和映射。列表有序,元素可重复;集合无序,元素不可重复;映射存储键值对。集合数据类型支持灵活建模、数据聚合和关系建模,提高查询性能和数据可用性。随着集合大小、元素类型和索引的考虑,在选择合适的集合数据类型时,需要权衡顺序性、唯一性和键值关系的需求。
Apache Cassandra 中的集合数据类型
2024-04-09

Apache Cassandra 中的集合数据类型

Apache Cassandra 中的集合数据类型包括:1. 列表(List):有序的元素集合,可以包含重复的元素。2. 集合(Set):无序的元素集合,不可以包含重复的元素。3. 映射(Map):键值对的集合,键和值可以是任意数据类型,并
2023-10-12

Python集合与字典数据类型实例分析

这篇文章主要讲解了“Python集合与字典数据类型实例分析”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Python集合与字典数据类型实例分析”吧!前言集合数据类型是没有顺序的简单对象的聚集
2023-06-29

Python时间数据类型的模块有哪些

这篇文章主要介绍“Python时间数据类型的模块有哪些”,在日常操作中,相信很多人在Python时间数据类型的模块有哪些问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Python时间数据类型的模块有哪些”的疑
2023-06-02

Python内置数据类型中的集合实例分析

本文小编为大家详细介绍“Python内置数据类型中的集合实例分析”,内容详细,步骤清晰,细节处理妥当,希望这篇“Python内置数据类型中的集合实例分析”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。1. 集合 s
2023-06-29

Python基本数据类型的集合是什么

这期内容当中小编将会给大家带来有关Python基本数据类型的集合是什么,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。集合作为Python基本数据类型之一,相较于整型和字符串等类型来说难度要高很多,我们需要
2023-06-02

学习python的第十一天(集合数据类型

1.集合数据类型1.定义用{}中间值用,隔开,且集合中元素排列是无序的,而且如果有相同元素会只保留一个2.算法1.必须掌握1.长度lenset_1 = {1,2,3,4,5}print(len(set_1))#52.成员运算in和not i
2023-01-31

Python数据类型在常见集合中的语法有哪些

这篇文章将为大家详细讲解有关Python数据类型在常见集合中的语法有哪些,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。Python数据类型中的set和C#中的集合(collection)不是
2023-06-17

Python中基础数据类型 set集合知识点总结

集合的简介集合是一个无序、不重复的序列它的基本用法包括成员检测和消除重复元素集合对象也支持像 联合,交集,差集,对称差分等数学运算集合中所有的元素放在 {} 中间,并用逗号分开集合的例子 这里会有个重点知识# 声明 basket = {'a
2022-06-02

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录