我的编程空间,编程开发者的网络收藏夹
学习永远不晚

PyTorch一小时掌握之autograd机制篇

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

PyTorch一小时掌握之autograd机制篇

概述

PyTorch 干的最厉害的一件事情就是帮我们把反向传播全部计算好了.

代码实现

手动定义求导


import torch

# 方法一
x = torch.randn(3, 4, requires_grad=True)

# 方法二
x = torch.randn(3,4)
x.requires_grad = True

b = torch.randn(3, 4, requires_grad=True)
t = x + b
y = t.sum()

print(y)
print(y.backward())
print(b.grad)

print(x.requires_grad)
print(b.requires_grad)
print(t.requires_grad)

输出结果:
tensor(1.1532, grad_fn=<SumBackward0>)
None
tensor([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]])
True
True
True

在这里插入图片描述

计算流量


# 计算流量
x = torch.rand(1)
w = torch.rand(1, requires_grad=True)
b = torch.rand(1, requires_grad=True)
y = w * x
z = y + b

print(x.requires_grad, w.requires_grad,b.requires_grad, z.requires_grad)
print(x.is_leaf, w.is_leaf, b.is_leaf, y.is_leaf,z.is_leaf)

输出结果:
False True True True
True True True False False

反向传播计算


# 反向传播
z.backward(retain_graph= True)  # 如果不清空会累加起来
print(w.grad)
print(b.grad)

输出结果:
tensor([0.1485])
tensor([1.])

线性回归

导包


import numpy as np
import torch
import torch.nn as nn

构造 x, y


# 构造数据
X_values = [i for i in range(11)]
X_train = np.array(X_values, dtype=np.float32)
X_train = X_train.reshape(-1, 1)
print(X_train.shape)  # (11, 1)

y_values = [2 * i + 1 for i in X_values]
y_train = np.array(y_values, dtype=np.float32)
y_train = y_train.reshape(-1,1)
print(y_train.shape)  # (11, 1)

输出结果:
(11, 1)
(11, 1)

构造模型


# 构造模型
class LinerRegressionModel(nn.Module):
    def __init__(self, input_dim, output_dim):
        super(LinerRegressionModel, self).__init__()
        self.liner = nn.Linear(input_dim, output_dim)

    def forward(self, x):
        out = self.liner(x)
        return out


input_dim = 1
output_dim = 1

model = LinerRegressionModel(input_dim, output_dim)
print(model)

输出结果:
LinerRegressionModel(
(liner): Linear(in_features=1, out_features=1, bias=True)
)

参数 & 损失函数


# 超参数
enpochs = 1000
learning_rate = 0.01

# 损失函数
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
criterion = nn.MSELoss()

训练模型


# 训练模型
for epoch in range(enpochs):
    # 转成tensor
    inputs = torch.from_numpy(X_train)
    labels = torch.from_numpy(y_train)

    # 梯度每次迭代清零
    optimizer.zero_grad()

    # 前向传播
    outputs = model(inputs)

    # 计算损失
    loss = criterion(outputs, labels)

    # 反向传播
    loss.backward()

    # 更新参数
    optimizer.step()
    if epoch % 50 == 0:
        print("epoch {}, loss {}".format(epoch, loss.item()))

输出结果:
epoch 0, loss 114.47456359863281
epoch 50, loss 0.00021522105089388788
epoch 100, loss 0.00012275540211703628
epoch 150, loss 7.001651829341426e-05
epoch 200, loss 3.9934264350449666e-05
epoch 250, loss 2.2777328922529705e-05
epoch 300, loss 1.2990592040296178e-05
epoch 350, loss 7.409254521917319e-06
epoch 400, loss 4.227155841363128e-06
epoch 450, loss 2.410347860859474e-06
epoch 500, loss 1.3751249525739695e-06
epoch 550, loss 7.844975016269018e-07
epoch 600, loss 4.4756839656656666e-07
epoch 650, loss 2.5517596213830984e-07
epoch 700, loss 1.4577410922811396e-07
epoch 750, loss 8.30393886985803e-08
epoch 800, loss 4.747753479250605e-08
epoch 850, loss 2.709844615367274e-08
epoch 900, loss 1.5436164346738224e-08
epoch 950, loss 8.783858973515635e-09

完整代码


import numpy as np
import torch
import torch.nn as nn

# 构造数据
X_values = [i for i in range(11)]
X_train = np.array(X_values, dtype=np.float32)
X_train = X_train.reshape(-1, 1)
print(X_train.shape)  # (11, 1)

y_values = [2 * i + 1 for i in X_values]
y_train = np.array(y_values, dtype=np.float32)
y_train = y_train.reshape(-1,1)
print(y_train.shape)  # (11, 1)

# 构造模型
class LinerRegressionModel(nn.Module):
    def __init__(self, input_dim, output_dim):
        super(LinerRegressionModel, self).__init__()
        self.liner = nn.Linear(input_dim, output_dim)

    def forward(self, x):
        out = self.liner(x)
        return out


input_dim = 1
output_dim = 1

model = LinerRegressionModel(input_dim, output_dim)
print(model)

# 超参数
enpochs = 1000
learning_rate = 0.01

# 损失函数
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
criterion = nn.MSELoss()

# 训练模型
for epoch in range(enpochs):
    # 转成tensor
    inputs = torch.from_numpy(X_train)
    labels = torch.from_numpy(y_train)

    # 梯度每次迭代清零
    optimizer.zero_grad()

    # 前向传播
    outputs = model(inputs)

    # 计算损失
    loss = criterion(outputs, labels)

    # 反向传播
    loss.backward()

    # 更新参数
    optimizer.step()
    if epoch % 50 == 0:
        print("epoch {}, loss {}".format(epoch, loss.item()))

到此这篇关于PyTorch一小时掌握之autograd机制篇的文章就介绍到这了,更多相关PyTorch autograd内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

PyTorch一小时掌握之autograd机制篇

下载Word文档到电脑,方便收藏和打印~

下载Word文档

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录