我的编程空间,编程开发者的网络收藏夹
学习永远不晚

C++ opencv图像处理实现灰度变换示例

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

C++ opencv图像处理实现灰度变换示例

灰度变换概念

在图像预处理中,图像的灰度变换是图像增强的重要手段,灰度变换可以使图像对比度扩展,图像清晰,特征明显,灰度变换主要利用点运算来修正像素灰度,由输入像素点的灰度值确定相应输出点的灰度值,是一种基于图像变换的操作。

灰度变换的作用

1.改善图像是质量,显示更多的细节,提高图像的对比度

2.有选择的突出图像感兴趣的特征或者抑制图像中不需要的特征

3.可以有效的改变图像的直方图的分布,使像素的分布更加均匀

灰度变换的方法

1.线性灰度变换

2.非线性灰度变换(对数变换,幂律变换(伽马变换))

灰度化

灰度的概念

在数字图像中,像素是基本的表示单位,各个像素的亮安程度用灰度值来标识,只含亮度信息,不含色彩信息的图像称为灰度图像,对于单色图像,它的每个像素的灰度值用【0,255】区间的整数表示,即图像分为256个灰度等级,对于彩色图像,他的每个像素由R,G,B三个单色调配而成,如果每个像素的R,G,B完全相同,也就是R=G=B=D,该图像就是灰度图像,其中D被称为各个像素的灰度值。

对彩色图进行灰度化

1.加权平均值法

D=0.299R+0.587G+0.114*B

代码如下:

#include<iostream>
#include<opencv.hpp>
using namespace std;
using namespace cv;
int main()
{
	Mat img, img2;
	img = imread("猫1.jpg");
	imshow("原图", img);
	img2.create(img.size(), 0);
	for (int i = 0; i < img.rows; i++)
	{
		for (int j = 0; j < img.cols; j++)
		{
			img2.at<uchar>(i, j) = saturate_cast<uchar>(0.114*img.at<Vec3b>(i, j)[0] + 0.587*img.at<Vec3b>(i, j)[1] + 0.299*img.at<Vec3b>(i, j)[2]);
		}
	}
	imshow("经验公式", img2);
	waitKey(0);
}

效果如下:

2.取最大值

代码如下:

int main()
{
	Mat img, img2;
	img = imread("猫1.jpg");
	imshow("原图", img);
	img2.create(img.size(), 0);
	for (int i = 0; i < img.rows; i++)
	{
		for (int j = 0; j < img.cols; j++)
		{
			int max = img.at<Vec3b>(i, j)[0];
			for (int x = 0; x < 3; x++)
			{
				if (max < img.at<Vec3b>(i, j)[x])
				{
					max = img.at<Vec3b>(i, j)[x];
				}
			}
			img2.at<uchar>(i, j) = saturate_cast<uchar>(max);
		}
	}
	imshow("最大值", img2);
	waitKey(0);
}

3.平均值

代码如下:

int main()
{
	Mat img, img2;
	img = imread("猫1.jpg");
	imshow("原图", img);
	img2.create(img.size(), 0);
	for (int i = 0; i < img.rows; i++)
	{
		for (int j = 0; j < img.cols; j++)
		{
			img2.at<uchar>(i, j) = saturate_cast<uchar>((img.at<Vec3b>(i, j)[0] + img.at<Vec3b>(i, j)[1] + img.at<Vec3b>(i, j)[2])/3);
		}
	}
	imshow("平均值", img2);
	waitKey(0);
}

灰度的线性变换

图像的线性变换是图像处理的基本运算,通常应用在调整图像的画面质量方面,如图像对比度,亮度及反转等操作。灰度的线性变换就是将图像中所有点的灰度按照线性灰度变换函数进行变换。

1.线性变换

y=kx+b;

代码如下:

int main()
{
	Mat img1, img2;
	img1 = imread("猫1.jpg", 1);
	imshow("原图", img1);
	img2 = Mat::zeros(img1.size(), 0);
	for (int i = 0; i < img1.rows; i++)
	{
		for (int j = 0; j < img1.cols; j++)
		{
			for (int s = 0; s < 3; s++)
			{
				img2.at<uchar>(i, j) = saturate_cast<uchar>(1.1*img1.at<Vec3b>(i, j)[s] + 20);
			}
		}
	}
	imshow("线性", img2);
	waitKey(0);
}

效果如下:

2.分段线性变换

请添加图片描述

代码如下:

int main()
{
	Mat img1, img2;
	img1 = imread("猫1.jpg", 0);
	imshow("原图", img1);
	img2 = Mat::zeros(img1.size(), 0);
	for (int i = 0; i < img1.rows; i++)
	{
		for (int j = 0; j < img1.cols; j++)
		{
			uchar temp = img1.at<uchar>(i, j);
			if (temp <=70)
			{
				img2.at<uchar>(i, j) = saturate_cast<uchar>(0.5*temp + 20);
			}
			else if (temp > 70 && temp <= 150)
			{
				img2.at<uchar>(i, j) = saturate_cast<uchar>(1.2*temp + 100);
			}
			else if (temp > 150 && temp <= 255)
			{
				img2.at<uchar>(i, j) = saturate_cast<uchar>(0.9*temp + 55);
			}
		}
	}
	imshow("分段线性", img2);
	waitKey(0);
}

效果如下:

灰度的非线性变换

对数变换和分对数变换都属于非线性变换

1.对数变换

对数变换能增强图像暗部的细节

代码如下:

int main()
{
	double c = 1.2;
	Mat img1, img2, img3;
	img1 = imread("猫1.jpg",0);
	img3 = Mat::ones(img1.size(), CV_32FC3);
	add(img1, Scalar(1.0), img1);
	img1.convertTo(img1, CV_32F);
	log(img1, img3);
	img3 = c*img3;
	normalize(img3, img3, 0, 255, NORM_MINMAX);//归一化到0-255 NORM_MINMAX 线性归一化
	convertScaleAbs(img3, img3);//转换成8bit通道显示
	imshow("对数变换", img3);
	waitKey(0);
}

效果如下:

2.幂律变换

幂律变换也称伽马变换或指数变换,主要用于图像的校正,对漂白的图片或过黑的图片进行修正,增强对比度

代码如下:

int main()
{
	Mat img1, img2;
	img1 = imread("猫1.jpg",0);
	img2.create(img1.size(), img1.type());
	for (int i = 0; i < img1.rows; i++)
	{
		for (int j = 0; j < img1.cols; j++)
		{
			int gray = img1.at<uchar>(i, j);
			img2.at<uchar>(i, j) = saturate_cast<uchar>(pow(gray,0.5));
		}
	}
	normalize(img2, img2, 0, 255, NORM_MINMAX);
	imshow("幂律变换", img2);
	waitKey(0);
}

效果如下:

总结

以上就是本文的全部内容,本文简单介绍了灰度化以及灰度变换的一些基础知识,更多关于C++ opencv灰度变换的资料请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

C++ opencv图像处理实现灰度变换示例

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

C++ opencv图像处理怎么实现图片几何变换

本文小编为大家详细介绍“C++ opencv图像处理怎么实现图片几何变换”,内容详细,步骤清晰,细节处理妥当,希望这篇“C++ opencv图像处理怎么实现图片几何变换”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧
2023-06-30

Python中图像灰度非线性变换的示例分析

这篇文章将为大家详细讲解有关Python中图像灰度非线性变换的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。一.图像灰度非线性变换原始图像的灰度值按照DB=DA×DA/255的公式进行
2023-06-29

Java数字图像处理之图像灰度处理怎么实现

本篇内容介绍了“Java数字图像处理之图像灰度处理怎么实现”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!一、简介图像灰度化处理可以作为图像处
2023-07-02

Python中图像点运算与灰度化处理的示例分析

这篇文章主要介绍了Python中图像点运算与灰度化处理的示例分析,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。一.图像点运算概念图像点运算(Point Operation)指
2023-06-29

OpenCV+Qt实现图像处理操作工具的示例代码

这篇文章主要介绍了利用OpenCV+Qt实现图像处理操作工具,可以实现雪花屏、高斯模糊、中值滤波、毛玻璃等操作,感兴趣的可以了解一下
2022-11-13

Python实现图像尺寸和格式转换处理的示例详解

这篇文章主要为大家详细介绍了如何利用Python实现图像尺寸获取和格式转换处理的功能,文中的示例代码讲解详细,感兴趣的可以了解一下
2023-05-14

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录