Python中怎么实现自动导入缺失的库
本篇内容主要讲解“Python中怎么实现自动导入缺失的库”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Python中怎么实现自动导入缺失的库”吧!
在写 Python 项目的时候,我们可能经常会遇到导入模块失败的错误:ImportError: No module named 'xxx' 或者 ModuleNotFoundError: No module named 'xxx' 。
导入失败问题,通常分为两种:一种是导入自己写的模块(即以 .py 为后缀的文件),另一种是导入三方库。本文主要讨论第二种情况,今后有机会,我们再详细讨论其它的相关话题。
解决导入 Python 库失败的问题,其实关键是在运行环境中装上缺失的库(注意是否是虚拟环境),或者使用恰当的替代方案。这个问题又分为三种情况:
一、单个模块中缺失的库
在编写代码的时候,如果我们需要使用某个三方库(如 requests),但不确定实际运行的环境是否装了它,那么可以这样写:
这样写的效果是,如果找不到 requests 库,就先安装,再导入。
在某些开源项目中,我们可能还会看到如下的写法(以 json 为例):
这样写的效果是,优先导入三方库 simplejson,如果找不到,那就使用内置的标准库 json。
这种写法的好处是不需要导入额外的库,但它有个缺点,即需要保证那两个库在使用上是兼容的,如果在标准库中找不到替代的库,那就不可行了。
如果真找不到兼容的标准库,也可以自己写一个模块(如 my_json.py),实现想要的东西,然后在 except 语句中再导入它。
二、整个项目中缺失的库
以上的思路是针对开发中的项目,但是它有几个不足:1、在代码中对每个可能缺失的三方库都 pip install,并不可取;2、某个三方库无法被标准库或自己手写的库替代,该怎么办?3、已成型的项目,不允许做这些修改怎么办?
所以这里的问题是:有一个项目,想要部署到新的机器上,它涉及很多三方库,但是机器上都没有预装,该怎么办?
对于一个合规的项目,按照约定,通常它会包含一个“requirements.txt ”文件,记录了该项目的所有依赖库及其所需的版本号。这是在项目发布前,使用命令pip freeze > requirements.txt 生成的。
使用命令pip install -r requirements.txt (在该文件所在目录执行,或在命令中写全文件的路径),就能自动把所有的依赖库给装上。
但是,如果项目不合规,或者由于其它倒霉的原因,我们没有这样的文件,又该如何是好?
一个笨方法就是,把项目跑起来,等它出错,遇到一个导库失败,就手动装一个,然后再跑一遍项目,遇到导库失败就装一下,如此循环……(此处省略 1 万句脏话)……
三、自动导入任意缺失的库
有没有一种更好的可以自动导入缺失的库的方法呢?
在不修改原有的代码的情况下,在不需要“requirements.txt”文件的情况下,有没有办法自动导入所需要的库呢?
当然有!先看看效果:
我们以 tornado 为例,第一步操作可看出,我们没有装过 tornado,经过第二步操作后,再次导入 tornado 时,程序会帮我们自动下载并安装好 tornado,所以不再报错。
autoinstall 是我们手写的模块,代码如下:
这段代码中使用了sys.meta_path ,我们先打印一下,看看它是个什么东西?
Python 3 的 import 机制在查找过程中,大致顺序如下:
在 sys.modules 中查找,它缓存了所有已导入的模块
在 sys.meta_path 中查找,它支持自定义的加载器
在 sys.path 中查找,它记录了一些库所在的目录名
若未找到,则抛出 ImportError 异常
其中要注意,sys.meta_path 在不同的 Python 版本中有所差异,比如它在 Python 2 与 Python 3 中差异很大;在较新的 Python 3 版本(3.4+)中,自定义的加载器需要实现find_spec 方法,而早期的版本用的则是find_module 。
以上代码是一个自定义的类库加载器 AutoInstall,可以实现自动导入三方库的目的。需要说明一下,这种方法会“劫持”所有新导入的库,破坏原有的导入方式,因此也可能出现一些奇奇怪怪的问题,敬请留意。
sys.meta_path 属于 Python 探针的一种运用。探针,即import hook,是 Python 几乎不受人关注的机制,但它可以做很多事,例如加载网络上的库、在导入模块时对模块进行修改、自动安装缺失库、上传审计信息、延迟加载等等。
到此,相信大家对“Python中怎么实现自动导入缺失的库”有了更深的了解,不妨来实际操作一番吧!这里是编程网网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341