我的编程空间,编程开发者的网络收藏夹
学习永远不晚

PyTorch模型保存与加载的方法

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

PyTorch模型保存与加载的方法

这篇文章主要介绍了PyTorch模型保存与加载的方法的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇PyTorch模型保存与加载的方法文章都会有所收获,下面我们一起来看看吧。

state_dict 是一个Python字典,将每一层映射成它的参数张量。注意只有带有可学习参数的层(卷积层、全连接层等),以及注册的缓存(batchnorm的运行平均值)在state_dict 中才有记录。state_dict同样包含优化器对象,存储了优化器的状态,所使用到的超参数。

一个简单的例子

# 定义模型class TheModelClass(nn.Module):    def __init__(self):        super(TheModelClass, self).__init__()        self.conv1 = nn.Conv2d(3, 6, 5)        self.pool = nn.MaxPool2d(2, 2)        self.conv2 = nn.Conv2d(6, 16, 5)        self.fc1 = nn.Linear(16 * 5 * 5, 120)        self.fc2 = nn.Linear(120, 84)        self.fc3 = nn.Linear(84, 10)    def forward(self, x):        x = self.pool(F.relu(self.conv1(x)))        x = self.pool(F.relu(self.conv2(x)))        x = x.view(-1, 16 * 5 * 5)        x = F.relu(self.fc1(x))        x = F.relu(self.fc2(x))        x = self.fc3(x)        return x# 初始化模型model = TheModelClass()# 初始化优化器optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)# 打印模型的 state_dictprint("Model's state_dict:")for param_tensor in model.state_dict():    print(param_tensor, "\t", model.state_dict()[param_tensor].size())# 打印优化器的 state_dictprint("Optimizer's state_dict:")for var_name in optimizer.state_dict():    print(var_name, "\t", optimizer.state_dict()[var_name])

输出:

Model's state_dict:
conv1.weight     torch.Size([6, 3, 5, 5])
conv1.bias   torch.Size([6])
conv2.weight     torch.Size([16, 6, 5, 5])
conv2.bias   torch.Size([16])
fc1.weight   torch.Size([120, 400])
fc1.bias     torch.Size([120])
fc2.weight   torch.Size([84, 120])
fc2.bias     torch.Size([84])
fc3.weight   torch.Size([10, 84])
fc3.bias     torch.Size([10])

Optimizer's state_dict:
state    {}
param_groups     [{'lr': 0.001, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'nesterov': False, 'params': [4675713712, 4675713784, 4675714000, 4675714072, 4675714216, 4675714288, 4675714432, 4675714504, 4675714648, 4675714720]}]

保存/加载 state_dict(推荐)

保存:

torch.save(model.state_dict(), PATH)

加载:

model = TheModelClass(*args, **kwargs)model.load_state_dict(torch.load(PATH))model.eval()

要注意这个细节,如果使用nn.DataParallel在一台电脑上使用了多个GPU,那么加载模型的时候也必须先进行nn.DataParallel。

保存模型的推理过程的时候,只需要保存模型训练好的参数,使用torch.save()保存state_dict,能够方便模型的加载。因此推荐使用这种方式进行模型保存。

记住一定要使用model.eval()来固定dropout和归一化层,否则每次推理会生成不同的结果。

注意,load_state_dict()需要传入字典对象,因此需要先反序列化state_dict再传入load_state_dict()

保存/加载整个模型

保存:

torch.save(model, PATH)

加载:

# 模型类必须在别的地方定义model = torch.load(PATH)model.eval()

这种保存/加载模型的过程使用了最直观的语法,所用代码量少。这使用Python的pickle保存所有模块。这种方法的缺点是,保存模型的时候,序列化的数据被绑定到了特定的类和确切的目录。这是因为pickle不保存模型类本身,而是保存这个类的路径,并且在加载的时候会使用。因此,当在其他项目里使用或者重构的时候,加载模型的时候会出错。

一般来说,PyTorch的模型以.pt或者.pth文件格式保存。

一定要记住在评估模式的时候调用model.eval()来固定dropout和批次归一化。否则会产生不一致的推理结果。

保存加载用于推理的常规Checkpoint/或继续训练

保存:

torch.save({            'epoch': epoch,            'model_state_dict': model.state_dict(),            'optimizer_state_dict': optimizer.state_dict(),            'loss': loss,            ...            }, PATH)

加载:

model = TheModelClass(*args, **kwargs)optimizer = TheOptimizerClass(*args, **kwargs)checkpoint = torch.load(PATH)model.load_state_dict(checkpoint['model_state_dict'])optimizer.load_state_dict(checkpoint['optimizer_state_dict'])epoch = checkpoint['epoch']loss = checkpoint['loss']model.eval()# - 或者 -model.train()

在保存用于推理或者继续训练的常规检查点的时候,除了模型的state_dict之外,还必须保存其他参数。保存优化器的state_dict也非常重要,因为它包含了模型在训练时候优化器的缓存和参数。除此之外,还可以保存停止训练时epoch数,最新的模型损失,额外的torch.nn.Embedding层等。

要保存多个组件,则将它们放到一个字典中,然后使用torch.save()序列化这个字典。一般来说,使用.tar文件格式来保存这些检查点。

加载各个组件,首先初始化模型和优化器,然后使用torch.load()加载保存的字典,然后可以直接查询字典中的值来获取保存的组件。

同样,评估模型的时候一定不要忘了调用model.eval()。

保存多个模型到一个文件

保存:

torch.save({            'modelA_state_dict': modelA.state_dict(),            'modelB_state_dict': modelB.state_dict(),            'optimizerA_state_dict': optimizerA.state_dict(),            'optimizerB_state_dict': optimizerB.state_dict(),            ...            }, PATH)

加载:

modelA = TheModelAClass(*args, **kwargs)modelB = TheModelBClass(*args, **kwargs)optimizerA = TheOptimizerAClass(*args, **kwargs)optimizerB = TheOptimizerBClass(*args, **kwargs)checkpoint = torch.load(PATH)modelA.load_state_dict(checkpoint['modelA_state_dict'])modelB.load_state_dict(checkpoint['modelB_state_dict'])optimizerA.load_state_dict(checkpoint['optimizerA_state_dict'])optimizerB.load_state_dict(checkpoint['optimizerB_state_dict'])modelA.eval()modelB.eval()# - 或者 -modelA.train()modelB.train()

保存的模型包含多个torch.nn.Modules时,比如GAN,一个序列-序列模型,或者组合模型,使用与保存常规检查点的方式来保存模型。也就是说,保存每个模型的state_dict和对应的优化器到一个字典中。我们可以保存任何能帮助我们继续训练的东西到这个字典中。

使用其他模型来预热当前模型

保存:

torch.save(modelA.state_dict(), PATH)

加载:

modelB = TheModelBClass(*args, **kwargs)modelB.load_state_dict(torch.load(PATH), strict=False)

在迁移学习或者训练新的复杂模型时,加载部分模型是很常见的。利用经过训练的参数,即使只有少数参数可用,也将有助于预热训练过程,并且使模型更快收敛。

在加载部分模型参数进行预训练的时候,很可能会碰到键不匹配的情况(模型权重都是按键值对的形式保存并加载回来的)。因此,无论是缺少键还是多出键的情况,都可以通过在load_state_dict()函数中设定strict参数为False来忽略不匹配的键。

如果想将某一层的参数加载到其他层,但是有些键不匹配,那么修改state_dict中参数的key可以解决这个问题。

跨设备保存与加载模型

GPU上保存,CPU上加载

保存:

torch.save(model.state_dict(), PATH)

加载:

device = torch.device('cpu')model = TheModelClass(*args, **kwargs)model.load_state_dict(torch.load(PATH, map_location=device))

当在CPU上加载一个GPU上训练的模型时,在torch.load()中指定map_location=torch.device('cpu'),此时,map_location动态地将tensors的底层存储重新映射到CPU设备上。

上述代码只有在模型是在一块GPU上训练时才有效,如果模型在多个GPU上训练,那么在CPU上加载时,会得到类似如下错误:

KeyError: ‘unexpected key “module.conv1.weight” in state_dict'

原因是在使用多GPU训练并保存模型时,模型的参数名都带上了module前缀,因此可以在加载模型时,把key中的这个前缀去掉:

# 原始通过DataParallel保存的文件state_dict = torch.load('myfile.pth.tar')# 创建一个不包含`module.`的新OrderedDictfrom collections import OrderedDictnew_state_dict = OrderedDict()for k, v in state_dict.items():    name = k[7:] # 去掉 `module.`    new_state_dict[name] = v# 加载参数model.load_state_dict(new_state_dict)

GPU上保存,GPU上加载

保存:

torch.save(model.state_dict(), PATH)

加载:

device = torch.device("cuda")model = TheModelClass(*args, **kwargs)model.load_state_dict(torch.load(PATH))model.to(device)# 往模型中输入数据的时候不要忘记在任意tensor上调用input = input.to(device)

在把GPU上训练的模型加载到GPU上时,只需要使用model.to(torch.devie('cuda'))将初始化的模型转换为CUDA优化模型。同时确保在模型所有的输入上使用.to(torch.device('cuda'))。注意,调用my_tensor.to(device)会返回一份在GPU上的my_tensor的拷贝。不会覆盖原本的my_tensor,因此要记得手动将tensor重写:my_tensor = my_tensor.to(torch.device('cuda'))。

CPU上保存,GPU上加载

保存:

torch.save(model.state_dict(), PATH)

加载:

device = torch.device("cuda")model = TheModelClass(*args, **kwargs)model.load_state_dict(torch.load(PATH, map_location="cuda:0"))  # 选择希望使用的GPUmodel.to(device)

保存torch.nn.DataParallel模型

保存:

torch.save(model.module.state_dict(), PATH)

关于“PyTorch模型保存与加载的方法”这篇文章的内容就介绍到这里,感谢各位的阅读!相信大家对“PyTorch模型保存与加载的方法”知识都有一定的了解,大家如果还想学习更多知识,欢迎关注编程网行业资讯频道。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

PyTorch模型保存与加载的方法

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

PyTorch模型保存与加载的方法

这篇文章主要介绍了PyTorch模型保存与加载的方法的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇PyTorch模型保存与加载的方法文章都会有所收获,下面我们一起来看看吧。state_dict 是一个Pytho
2023-06-30

pytorch模型的保存加载与续训练详解

这篇文章主要为大家介绍了pytorch模型的保存加载与续训练详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2022-11-13

Pytorch模型参数的保存和加载

pytorch中state_dict()和load_state_dict()函数配合使用可以实现状态的获取与重载,load()和save()函数配合使用可以实现参数的存储与读取,这篇文章主要介绍了Pytorch模型参数的保存和加载,需要的朋友可以参考下
2023-03-11

pytorch模型保存与加载问题怎么解决

这篇“pytorch模型保存与加载问题怎么解决”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“pytorch模型保存与加载问题
2023-07-04

API模型的保存与加载方法是什么

本篇内容介绍了“API模型的保存与加载方法是什么”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!  1.目的:  将训练好的模型保存下来,已备
2023-06-02

Pytorch模型参数如何保存和加载

这篇文章主要介绍“Pytorch模型参数如何保存和加载”,在日常操作中,相信很多人在Pytorch模型参数如何保存和加载问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Pytorch模型参数如何保存和加载”的疑
2023-07-05

tensorflow模型怎么保存与加载

在TensorFlow中,可以使用tf.keras.models.save_model()方法保存模型,该方法将模型保存为HDF5文件格式。可以使用以下代码保存模型:model.save('my_model.h5')加
tensorflow模型怎么保存与加载
2024-04-03

模型的保存加载、模型微调、GPU使用及Pytorch常见报错

序列化与反序列化 序列化就是说内存中的某一个对象保存到硬盘当中,以二进制序列的形式存储下来,这就是一个序列化的过程。 而反序列化,就是将硬盘中存储的二进制的数,反序列化到内存当中,得到一个相应的对象,这样就可以再次使用这个模型了。 序列化和
2023-08-30

tensorflow怎么保存和加载模型

在TensorFlow中,可以使用tf.keras.models.save_model和tf.keras.models.load_model函数来保存和加载模型。保存模型:model.save("my_model.h5")加载模型:m
tensorflow怎么保存和加载模型
2024-04-03

如何保存和加载TensorFlow模型

在TensorFlow中,可以使用tf.train.Saver类来保存和加载模型。以下是保存和加载TensorFlow模型的步骤:保存模型:import tensorflow as tf# 创建一个Saver对象saver = tf.tr
如何保存和加载TensorFlow模型
2024-03-01

Caffe中怎么保存和加载模型

在Caffe中,可以使用以下命令来保存和加载模型:保存模型:./build/tools/caffe train -solver /path/to/solver.prototxt -snapshot /path/to/snapshot_i
Caffe中怎么保存和加载模型
2024-03-07

Keras中怎么保存和加载模型

在Keras中,可以使用model.save()方法来保存模型,使用keras.models.load_model()方法来加载模型。具体的操作步骤如下:保存模型:# 保存模型model.save('my_model.h5&
Keras中怎么保存和加载模型
2024-03-07

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录