我的编程空间,编程开发者的网络收藏夹
学习永远不晚

java语言自行实现ULID过程底层原理详解

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

java语言自行实现ULID过程底层原理详解

前提

最近发现各个频道推荐了很多ULID相关文章,这里对ULID的规范文件进行解读,并且基于Java语言自行实现ULID,通过此实现过程展示ULID的底层原理。

ULID出现的背景

ULID全称是Universally Unique Lexicographically Sortable Identifier,直译过来就是通用唯一按字典排序的标识符,它的原始仓库是https://github.com/ulid/javascript,该项目由前端开发者alizain发起,基于JavaScript语言编写。从项目中的commit历史来看已经超过了5年,理论上得到充分的实践验证。ULID出现的原因是一些开发者认为主流的UUID方案在许多场景下可能不是最优的,存在下面的原因:

  • UUID不是128 bit随机编码(由128 bit随机数通过编码生成字符串)的最高效实现方式
  • UUIDv1/v2实现在许多环境中是不切实际的,因为这两个版本的的实现需要访问唯一的、稳定的MAC地址
  • UUIDv3/v5实现需要唯一的种子,并且产生随机分布的ID,这可能会导致在许多数据结构中出现碎片
  • UUIDv4除了随机性之外不需要提供其他信息,随机性可能会在许多数据结构中导致碎片

这里概括一下就是:UUIDv1/v2实现依赖唯一稳定MAC地址不现实,v3/v4/v5实现因为随机性产生的ID会"碎片化"。

基于此提出了ULID,它用起来像这样:

ulid() // 01ARZ3NDEKTSV4RRFFQ69G5FAV

ULID的特点如下:

  • 设计为128 bit大小,与UUID兼容
  • 每毫秒生成1.21e+24个唯一的ULID(高性能)
  • 按字典顺序(字母顺序)排序
  • 标准编码为26个字符的字符串,而不是像UUID那样需要36个字符
  • 使用Crockfordbase32算法来提高效率和可读性(每个字符5 bit
  • 不区分大小写
  • 没有特殊字符串(URL安全,不需要进行二次URL编码)
  • 单调排序(正确地检测并处理相同的毫秒,所谓单调性,就是毫秒数相同的情况下,能够确保新的ULID随机部分的在最低有效位上加1位)

ULID规范

下面的ULID规范在ULID/javascript类库中实现,此二进制格式目前没有在JavaScript中实现:

 01AN4Z07BY      79KA1307SR9X4MV3
|----------|    |----------------|
 Timestamp          Randomness
   48bits             80bits

组成

时间戳(Timestamp)

  • 占据48 bit(high)
  • 本质是UNIX-time,单位为毫秒
  • 直到公元10889年才会用完

随机数(Randomness)

  • 占据80 bit(low)
  • 如果可能的话,使用加密安全的随机源

排序

"最左边"的字符必须排在最前面,"最右边"的字符排在最后(词法顺序,或者俗称的字典排序),并且所有字符必须使用默认的ASCII字符集。在相同的毫秒(时间戳)内,无法保证排序顺序。

规范的表示形式

ULID规范的字符串表示形式如下:

ttttttttttrrrrrrrrrrrrrrrr
where
t is Timestamp (10 characters)
r is Randomness (16 characters)

也就是:

  • 时间戳占据高(左边)10个(编码后的)字符
  • 随机数占据低(右边)16个(编码后的)字符

ULID规范的字符串表示形式的长度是确定的,共占据26个字符。

编码

使用Crockford Base32编码算法,这个编码算法的字母表如下:

0123456789ABCDEFGHJKMNPQRSTVWXYZ

该字母表排除了ILOU字母,目的是避免混淆和滥用。此算法实现不难,它的官网有详细的算法说明(https://www.crockford.com/base32.html):

单调性

(如果启用了单调性这个特性为前提下)当在相同的毫秒内生成多个ULID时,可以保证排序的顺序。也就是说,如果检测到相同的毫秒,则随机分量在最低有效位上加1位(带进位)。例如:

monotonicUlid()  // 01BX5ZZKBKACTAV9WEVGEMMVRZ
monotonicUlid()  // 01BX5ZZKBKACTAV9WEVGEMMVS0

溢出错误处理

从技术实现上来看,26个字符的Base32编码字符串可以包含130 bit信息,而ULID只包含128 bit信息,所以该编码算法是能完全满足ULID的需要。基于Base32编码能够生成的最大的合法ULID其实就是7ZZZZZZZZZZZZZZZZZZZZZZZZZ,并且使用的时间戳为epoch time281474976710655或者说2 ^ 48 - 1。对于任何对大于此值的ULID进行解码或编码的尝试都应该被所有实现拒绝,以防止溢出错误。

二进制布局

二进制布局的多个部分被编码为16 byte,每个部分都以最高字节优先(网络字节序,也就是big-endian)进行编码,布局如下:

0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                      32_bit_uint_time_high                    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|     16_bit_uint_time_low      |       16_bit_uint_random      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                       32_bit_uint_random                      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                       32_bit_uint_random                      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

ULID使用

对于script标签引用:

<script class="lazy" data-src="https://unpkg.com/ulid@latest/dist/index.umd.js"></script>
<script>
    ULID.ulid()
</script>

NPM安装:

npm install --save ulid

TypeScript, ES6+, Babel, Webpack, Rollup等等下使用:

// import
import { ulid } from 'ulid'
ulid()
// CommonJS env
const ULID = require('ulid')
ULID.ulid()

后端Maven项目中使用需要引入依赖,这里选用ulid-creator实现:

<dependency>
  <groupId>com.github.f4b6a3</groupId>
  <artifactId>ulid-creator</artifactId>
  <version>5.0.2</version>
</dependency>

然后调用UlidCreator#getUlid()系列方法:

// 常规
Ulid ulid = UlidCreator.getUlid();
// 单调排序
Ulid ulid = UlidCreator.getMonotonicUlid();

实现ULID

前面已经提到ULID的规范,其实具体实现ULID就是对着规范里面的每一个小节进行编码实现。先看二进制布局,由于使用128 bit去存储,可以借鉴UUID那样,使用两个long类似的成员变量存储ULID的信息,看起来像这样:

public final class ULID {
    
    private final long msb;
    
    private final long lsb;
    public ULID(long msb, long lsb) {
        this.msb = msb;
        this.lsb = lsb;
    }
}

按照ULID的组成来看,可以提供一个入参为时间戳和随机数字节数组的构造:

public ULID(long timestamp, byte[] randomness) {
    if ((timestamp & TIMESTAMP_MASK) != 0) {
        throw new IllegalArgumentException("Invalid timestamp");
    }
    if (Objects.isNull(randomness) || RANDOMNESS_BYTE_LEN != randomness.length) {
        throw new IllegalArgumentException("Invalid randomness");
    }
    long msb = 0;
    long lsb = 0;
    // 时间戳左移16位,低位补零准备填入部分随机数位,即16_bit_uint_random
    msb |= timestamp << 16;
    // randomness[0]左移0位填充到16_bit_uint_random的高8位,randomness[1]填充到16_bit_uint_random的低8位
    msb |= (long) (randomness[0x0] & 0xff) << 8;
    // randomness[1]填充到16_bit_uint_random的低8位
    msb |= randomness[0x1] & 0xff;
    // randomness[2] ~ randomness[9]填充到剩余的bit_uint_random中,要左移相应的位
    lsb |= (long) (randomness[0x2] & 0xff) << 56;
    lsb |= (long) (randomness[0x3] & 0xff) << 48;
    lsb |= (long) (randomness[0x4] & 0xff) << 40;
    lsb |= (long) (randomness[0x5] & 0xff) << 32;
    lsb |= (long) (randomness[0x6] & 0xff) << 24;
    lsb |= (long) (randomness[0x7] & 0xff) << 16;
    lsb |= (long) (randomness[0x8] & 0xff) << 8;
    lsb |= (randomness[0x9] & 0xff);
    this.msb = msb;
    this.lsb = lsb;
}

这是完全按照规范的二进制布局编写代码,可以像UUID的构造那样精简一下:

long msb = 0;
long lsb = 0;
byte[] data = new byte[16];
byte[] ts = ByteBuffer.allocate(8).putLong(0, timestamp << 16).array();
System.arraycopy(ts, 0, data, 0, 6);
System.arraycopy(randomness, 0, data, 6, 10);
for (int i = 0; i < 8; i++)
    msb = (msb << 8) | (data[i] & 0xff);
for (int i = 8; i < 16; i++)
    lsb = (lsb << 8) | (data[i] & 0xff);

接着可以简单添加下面几个方法:

public long getMostSignificantBits() {
    return this.msb;
}
public long getLeastSignificantBits() {
    return this.lsb;
}
// 静态工厂方法,由UUID实例生成ULID实例
public static ULID fromUUID(UUID uuid) {
    return new ULID(uuid.getMostSignificantBits(), uuid.getLeastSignificantBits());
}
// 实例方法,当前ULID实例转换为UUID实例
public UUID toUUID() {
    return new UUID(this.msb, this.lsb);
}

接着需要覆盖toString()方法,这是ULID的核心方法,需要通过Crockford Base32编码生成规范的字符串表示形式。由于128 bit要映射为26 char,这里可以考虑分三段进行映射,也就是48 bit时间戳映射为10 char,剩下的两部分随机数分别做40 bit8 char的映射,加起来就是26 char

 |----------|      |----------------|
  Timestamp     Randomness[split to 2 part]
48bit => 10char    80bit => 16char

编写方法:


private static final char[] DEFAULT_ALPHABET = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C',
        'D', 'E', 'F', 'G', 'H', 'J', 'K', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'V', 'W', 'X', 'Y', 'Z'};

private static final int DEFAULT_ALPHABET_MASK = 0b11111;

private static final int ULID_CHAR_LEN = 0x1a;
@Override
public String toString() {
    return toCanonicalString(DEFAULT_ALPHABET);
}
public String toCanonicalString(char[] alphabet) {
    char[] chars = new char[ULID_CHAR_LEN];
    long timestamp = this.msb >> 16;
    // 第一部分随机数取msb的低16位+lsb的高24位,这里(msb & 0xffff) << 24作为第一部分随机数的高16位,所以要左移24位
    long randMost = ((this.msb & 0xffffL) << 24) | (this.lsb >>> 40);
    // 第二部分随机数取lsb的低40位,0xffffffffffL是2^40-1
    long randLeast = (this.lsb & 0xffffffffffL);
    // 接着每个部分的偏移量和DEFAULT_ALPHABET_MASK(31)做一次或运算就行,就是char[index] = alphabet[(part >> (step * index)) & 31]
    chars[0x00] = alphabet[(int) (timestamp >>> 45 & DEFAULT_ALPHABET_MASK)];
    chars[0x01] = alphabet[(int) (timestamp >>> 40 & DEFAULT_ALPHABET_MASK)];
    chars[0x02] = alphabet[(int) (timestamp >>> 35 & DEFAULT_ALPHABET_MASK)];
    chars[0x03] = alphabet[(int) (timestamp >>> 30 & DEFAULT_ALPHABET_MASK)];
    chars[0x04] = alphabet[(int) (timestamp >>> 25 & DEFAULT_ALPHABET_MASK)];
    chars[0x05] = alphabet[(int) (timestamp >>> 20 & DEFAULT_ALPHABET_MASK)];
    chars[0x06] = alphabet[(int) (timestamp >>> 15 & DEFAULT_ALPHABET_MASK)];
    chars[0x07] = alphabet[(int) (timestamp >>> 10 & DEFAULT_ALPHABET_MASK)];
    chars[0x08] = alphabet[(int) (timestamp >>> 5 & DEFAULT_ALPHABET_MASK)];
    chars[0x09] = alphabet[(int) (timestamp & DEFAULT_ALPHABET_MASK)];
    chars[0x0a] = alphabet[(int) (randMost >>> 35 & DEFAULT_ALPHABET_MASK)];
    chars[0x0b] = alphabet[(int) (randMost >>> 30 & DEFAULT_ALPHABET_MASK)];
    chars[0x0c] = alphabet[(int) (randMost >>> 25 & DEFAULT_ALPHABET_MASK)];
    chars[0x0d] = alphabet[(int) (randMost >>> 20 & DEFAULT_ALPHABET_MASK)];
    chars[0x0e] = alphabet[(int) (randMost >>> 15 & DEFAULT_ALPHABET_MASK)];
    chars[0x0f] = alphabet[(int) (randMost >>> 10 & DEFAULT_ALPHABET_MASK)];
    chars[0x10] = alphabet[(int) (randMost >>> 5 & DEFAULT_ALPHABET_MASK)];
    chars[0x11] = alphabet[(int) (randMost & DEFAULT_ALPHABET_MASK)];
    chars[0x12] = alphabet[(int) (randLeast >>> 35 & DEFAULT_ALPHABET_MASK)];
    chars[0x13] = alphabet[(int) (randLeast >>> 30 & DEFAULT_ALPHABET_MASK)];
    chars[0x14] = alphabet[(int) (randLeast >>> 25 & DEFAULT_ALPHABET_MASK)];
    chars[0x15] = alphabet[(int) (randLeast >>> 20 & DEFAULT_ALPHABET_MASK)];
    chars[0x16] = alphabet[(int) (randLeast >>> 15 & DEFAULT_ALPHABET_MASK)];
    chars[0x17] = alphabet[(int) (randLeast >>> 10 & DEFAULT_ALPHABET_MASK)];
    chars[0x18] = alphabet[(int) (randLeast >>> 5 & DEFAULT_ALPHABET_MASK)];
    chars[0x19] = alphabet[(int) (randLeast & DEFAULT_ALPHABET_MASK)];
    return new String(chars);
}

上面的方法toCanonicalString()看起来很"臃肿",但是能保证性能比较高。接着添加常用的工厂方法:

public static ULID ulid() {
    return ulid(System::currentTimeMillis, len -> {
        byte[] bytes = new byte[len];
        ThreadLocalRandom.current().nextBytes(bytes);
        return bytes;
    });
}
public static ULID ulid(Supplier<Long> timestampProvider,
                        IntFunction<byte[]> randomnessProvider) {
    return new ULID(timestampProvider.get(), randomnessProvider.apply(RANDOMNESS_BYTE_LEN));
}

默认使用ThreadLocalRandom生成随机数,如果是JDK17以上,还可以选用更高性能的新型PRNG实现,对应接口是RandomGenerator,默认实现是L32X64MixRandom。编写一个main方法运行一下:

public static void main(String[] args) {
    System.out.println(ULID.ulid());
}
// 某次执行结果
01GFGGMBFGB5WKXBN7S84ATRDG

最后实现"单调递增"的ULID构造,先提供一个"增长"方法:


private static final long OVERFLOW = 0x0000000000000000L;
public ULID increment() {
    long msb = this.msb;
    long lsb = this.lsb + 1;
    if (lsb == OVERFLOW) {
        msb += 1;
    }
    return new ULID(msb, lsb);
}

其实就是低位加1,溢出后高位加1。接着添加一个静态内部子类和响应方法如下:

// 构造函数
public ULID(ULID other) {
    this.msb = other.msb;
    this.lsb = other.lsb;
}
public static byte[] defaultRandomBytes(int len) {
    byte[] bytes = new byte[len];
    ThreadLocalRandom.current().nextBytes(bytes);
    return bytes;
}
public static MonotonicULIDSpi monotonicUlid() {
    return monotonicUlid(System::currentTimeMillis, ULID::defaultRandomBytes);
}
public static MonotonicULIDSpi monotonicUlid(Supplier&lt;Long&gt; timestampProvider,
                                              IntFunction&lt;byte[]&gt; randomnessProvider) {
    return new MonotonicULID(timestampProvider, randomnessProvider, timestampProvider.get(),
            randomnessProvider.apply(RANDOMNESS_BYTE_LEN));
}
// @SPI MonotonicULID
public interface MonotonicULIDSpi {
  ULID next();
}
private static class MonotonicULID extends ULID implements MonotonicULIDSpi {
    @Serial
    private static final long serialVersionUID = -9158161806889605101L;
    private volatile ULID lastULID;
    private final Supplier&lt;Long&gt; timestampProvider;
    private final IntFunction&lt;byte[]&gt; randomnessProvider;
    public MonotonicULID(Supplier&lt;Long&gt; timestampProvider,
                          IntFunction&lt;byte[]&gt; randomnessProvider,
                          long timestamp,
                          byte[] randomness) {
        super(timestamp, randomness);
        this.timestampProvider = timestampProvider;
        this.randomnessProvider = randomnessProvider;
        this.lastULID = new ULID(timestamp, randomness);
    }
    // 这里没设计好,子类缓存了上一个节点,需要重写一下increment方法,父类可以移除此方法 
    @Override
    public ULID increment() {
        long newMsb = lastULID.msb;
        long newLsb = lastULID.lsb + 1;
        if (newLsb == OVERFLOW) {
            newMsb += 1;
        }
        return new ULID(newMsb, newLsb);
    }
    @Override
    public synchronized ULID next() {
        long lastTimestamp = lastULID.getTimestamp();
        long timestamp = getTimestamp();
        // 这里做了一个恒为true的判断,后面再研读其他代码进行修改
        if (lastTimestamp &gt;= timestamp || timestamp - lastTimestamp &lt;= 1000) {
            this.lastULID = this.increment();
        } else {
            this.lastULID = new ULID(timestampProvider.get(), randomnessProvider.apply(RANDOMNESS_BYTE_LEN));
        }
        return new ULID(this.lastULID);
    }
}

关于上一个ULID和下一个ULID之间的时间戳判断,这里从规范文件没看出细节实现,先简单做一个永远为true的分支判断,后面再深入研究然后修改。使用方式如下:

public static void main(String[] args) {
    MonotonicULIDSpi spi = ULID.monotonicUlid();
    System.out.println(spi.next());
    System.out.println(spi.next());
    System.out.println(spi.next());
    System.out.println(spi.next());
}
// 某次运行输出
01GFGASXXQXD5ZJ26PKSCFGNPF
01GFGASXXQXD5ZJ26PKSCFGNPG
01GFGASXXQXD5ZJ26PKSCFGNPH
01GFGASXXQXD5ZJ26PKSCFGNPJ

这里为了更加灵活,没有采用全局静态属性缓存上一个ULID实例,而是简单使用继承方式实现。

ULID性能评估

引入JMH做了一个简单的性能测试,代码如下:

@Fork(1)
@Threads(10)
@State(Scope.Benchmark)
@BenchmarkMode(Mode.Throughput)
@Warmup(iterations = 1, time = 1)
@Measurement(iterations = 5, time = 3)
@OutputTimeUnit(TimeUnit.MILLISECONDS)
public class BenchmarkRunner {
    private static ULID.MonotonicULIDSpi SPI;
    @Setup
    public void setup() {
        SPI = ULID.monotonicUlid();
    }
    @Benchmark
    public UUID createUUID() {
        return UUID.randomUUID();
    }
    @Benchmark
    public String createUUIDToString() {
        return UUID.randomUUID().toString();
    }
    @Benchmark
    public ULID createULID() {
        return ULID.ulid();
    }
    @Benchmark
    public String createULIDToString() {
        return ULID.ulid().toString();
    }
    @Benchmark
    public ULID createMonotonicULID() {
        return SPI.next();
    }
    @Benchmark
    public String createMonotonicULIDToString() {
        return SPI.next().toString();
    }
    public static void main(String[] args) throws Exception {
        new Runner(new OptionsBuilder().build()).run();
    }
}

某次测试报告如下(开发环境Intel 6700K 4C8T 32G,使用OpenJDK-19):

Benchmark                                     Mode  Cnt       Score       Error   Units
BenchmarkRunner.createMonotonicULID          thrpt    5   20335.118 ±  1656.772  ops/ms
BenchmarkRunner.createMonotonicULIDToString  thrpt    5   13091.975 ±  1207.403  ops/ms
BenchmarkRunner.createULID                   thrpt    5  152574.703 ± 23740.021  ops/ms
BenchmarkRunner.createULIDToString           thrpt    5   51559.800 ±  3608.085  ops/ms
BenchmarkRunner.createUUID                   thrpt    5     819.890 ±    15.508  ops/ms
BenchmarkRunner.createUUIDToString           thrpt    5     786.072 ±    44.770  ops/ms

小结

本文就ULID的规范进行解读,通过规范和参考现有类库进行ULIDJava实现。ULID适用于一些"排序ID"生成或者需要"单调ID"生成的场景,可以考虑用于数据库键设计、顺序号设计等等场景。从实现上看它性能会优于UUID(特别是单调ULID,因为不需要重新获取随机数部分,吞吐量会提升一个数量级)。

Demo项目仓库:

  • framework-mesh/ulid4jhttps://github.com/zjcscut/framework-mesh/tree/master/ulid4j

参考资料:

crockford-base32

ulid-creator

以上就是java语言自行实现ULID过程底层原理详解的详细内容,更多关于java ULID底层原理的资料请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

java语言自行实现ULID过程底层原理详解

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

java语言自行实现ULID过程底层原理详解

这篇文章主要为大家介绍了java语言自行实现ULID过程底层原理详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2022-11-13

Go语言编译器实现原理与编译过程详解

标题:Go语言编译器实现原理与编译过程详解在计算机编程领域中,编译器是一种非常重要的工具,它负责将我们编写的高级语言代码转换为目标机器能够执行的机器码。Go语言作为一种快速、高效的编程语言,在其编译器设计方面也有其独特之处。本文将详细介绍
Go语言编译器实现原理与编译过程详解
2024-03-11

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录