我的编程空间,编程开发者的网络收藏夹
学习永远不晚

聊聊Numpy.array中[:]和[::]的区别在哪

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

聊聊Numpy.array中[:]和[::]的区别在哪

[:]和[::]的区别蛮大的,用的好可以节省时间,下面以实例进行分析

array([:])


>>> import numpy as np
>>>
>>> x=np.array([1,2,3,4,5,6,7,8,9,10,11,12])
>>> print(x[1:5])#打印index为1~5的数组,范围是左闭右开
[2 3 4 5]
>>> print(x[3:])#打印index=3之后的数组,包含index=3
[ 4  5  6  7  8  9 10 11 12]
>>> print(x[:9])#打印index=9之前的数组,不包含index=9
[1 2 3 4 5 6 7 8 9]
>>> print(x[1:-2])#打印index=1到倒数第2个index之间的数组
[ 2  3  4  5  6  7  8  9 10]
>>> print(x[-9:-2])#打印倒数第9个index和倒数第2个index之间的数组,左开右闭
[ 4  5  6  7  8  9 10]

array([::])


>>> print(x[1::3])#以index=1为起始位置,间隔3
[ 2  5  8 11]
>>> print(x[::3])#默认从index=0开始,间隔3
[ 1  4  7 10]
>>> print(x[3::])#和[3:]一样
[ 4  5  6  7  8  9 10 11 12]
>>> print(x[::-1])#反向打印数据,从最后一个index开始,间隔为1
[12 11 10  9  8  7  6  5  4  3  2  1]
>>> print(x[::-3])#反向打印数据,从最后一个index开始,间隔为3
[12  9  6  3]
>>> print(x[7:2:-1])#反向打印index=2(不包含)到index=7之间的数据
[8 7 6 5 4]

也是碰到这方面的问题,没搞明白,干脆试了试就清楚了,应该[:]和[::]还有很多有趣的地方。

补充:Numpy.array()详解 、np.array与np.asarray辨析、 np.array和np.ndarry的区别

记录一下numpy.array()的详细用法,以及与np.asarray()和np.ndarray()的区别。

1. Numpy.array()详解

该函数的作用一言蔽之就是用来产生数组。

1.1 函数形式


numpy.array(object, 
    dtype=None, 
    copy=True, 
    order='K', 
    subok=False, 
    ndmin=0)

1.2 参数详解

object:必选参数,类型为array_like,可以有四种类型:数组,公开数组接口的任何对象,__array__方法返回数组的对象,或任何(嵌套)序列。np.array()的作用就是按照一定要求将object转换为数组。

dtype:可选参数,用来表示数组元素的类型。如果没有给出,那么类型将被确定为保持序列中的对象所需的最小类型。注: This argument can only be used to ‘upcast' the array. For downcasting, use the .astype(t) method.

copy:可选参数,类型为bool值。如果为true(默认值),则复制对象。否则的话只有在以下三种情况下才会返回副本:(1).if __array__ returns a copy;(2). if obj is a nested sequence;(3). if a copy is needed to satisfy any of the other requirements (dtype, order, etc.)

order:{‘K', ‘A', ‘C', ‘F'},optional 。指定阵列的内存布局。该参数我至今还没有遇到过具体用法,这句话的意思就是我不会,故在此省略。

subok:可选参数,类型为bool值。如果为True,则子类将被传递,否则返回的数组将被强制为基类数组(默认)。或者说,True:使用object的内部数据类型,False:使用object数组的数据类型。

ndmin:可选参数,类型为int型。指定结果数组应具有的最小维数。

返回对象

out:输出ndarray,满足指定要求的数组对象。

1.3 具体用法

简单示例


import numpy as np
 
arr01 = np.array([1,2,3])
print(arr01) #[1 2 3]
print(type(arr01))  #<class 'numpy.ndarray'>
print(arr01.dtype)  #int32
 
#Upcasting
arr02 = np.array([1.,2.,3.])
print(arr02) #[1. 2. 3.]
print(arr02.dtype)  #float64
 
#More than one dimension:
arr03 = np.array([[1,2],[3,4]])
print(arr03)
"""
[[1 2]
 [3 4]]
"""

dtype参数使用示例


import numpy as np
 
#指定数组元素类型为复数类型
DYX= np.array([1,2,3],dtype = complex)
print(DYX) #[1.+0.j 2.+0.j 3.+0.j]
print(DYX.dtype)  #complex128
 
#由多个元素组成的数据类型:
HXH = np.array([(1,2),(3,4)],dtype=[('a','<i4'),('b','<i8')])
print(HXH)  #[(1, 2) (3, 4)]
#下面的输出有点神奇,我也只能记住规律了。
print(HXH["a"]) #[1 3]
print(HXH["b"])  #[2 4]
print(HXH.dtype)  #[('a', '<i4'), ('b', '<i8')]
print(HXH["a"].dtype) #int32
print(HXH["b"].dtype) #int64
 
TSL = np.array([(1,2,3),(4,5,6)],dtype=[("a","i"),("b","i"),("c","i")])
print(TSL["a"]) #[1 4]
print(TSL["a"].dtype)  #int32

上述代码中,numpy的数据类型,可以百度下

subok参数使用示例


import numpy as np
 
DYX = np.array(np.mat('1 2; 3 4'))
#没有显示的写出subok的值,但是默认为False
print(DYX)
#数组类型
print(type(DYX))  #<class 'numpy.ndarray'>
"""
[[1 2]
 [3 4]]
"""
 
HXH = np.array(np.mat('1 2; 3 4'), subok=True)
print(HXH)
#矩阵类型
print(type(HXH))  #<class 'numpy.matrixlib.defmatrix.matrix'>
"""
[[1 2]
 [3 4]]
"""

前文对subok的描述是这样的:“如果为True,则子类将被传递,否则返回的数组将被强制为基类数组(默认)”。

在上文的代码中“np.mat('1 2; 3 4')”,就是子类,是矩阵类型。DYX = np.array(np.mat('1 2; 3 4'))中subok为False,返回的数组类型被强制为基类数组,所以DYX的类型是<class 'numpy.ndarray'>,是数组;HXH = np.array(np.mat('1 2; 3 4'), subok=True)中subok为True,子类被传递,所以HXH的类型是矩阵<class 'numpy.matrixlib.defmatrix.matrix'>。

这就是区别所在。

ndmin参数使用示例


import numpy as np
 
DYX = np.array([1,2,3],ndmin=0)
print(DYX,DYX.shape) #[1 2 3] (3,)
 
HXH = np.array([1,2,3],ndmin=1)
print(HXH,HXH.shape) #[1 2 3] (3,)
 
TSL = np.array([1,2,3],ndmin=2)
print(TSL,TSL.shape) #[[1 2 3]] (1, 3)

其他两个参数copy和order,我至今还没有遇到过,所以暂且不表。谁有介绍这两个参数用法的博客吗?

2. Asarray和Array辨析

Numpy.asaray的用法不再赘述,主要介绍一下二者的区别。

2.1 object对象是普通迭代序列时


import numpy as np
 
data = [1,1,1]
print(type(data)) #<class 'list'> 列表类型
arr_ar = np.array(data)
arr_as = np.asarray(data)
 
#输出上没有区别
print(arr_ar) #[1 1 1]
print(arr_as) #[1 1 1]
 
data[1]=2
#改变原序列对arr_ar和arr_as没影响
print(arr_ar) #[1 1 1]
print(arr_as) #[1 1 1]
 
#此时data是[1, 2, 1]
#改变arr_ar和arr_as对原序列没有影响
arr_ar[1]=3
print(data) #[1, 2, 1]
arr_as[1]=3
print(data)  #[1, 2, 1]

可见在参数对象是普通迭代序列时,asarray和array没有区别(在我的理解范围内)。

2.2 object对象是ndarray对象时


import numpy as np 
data = np.ones((3,))
#print(type(data)) #<class 'numpy.ndarray'> 数组类型
arr_ar = np.array(data)
arr_as = np.asarray(data)
 
print(arr_ar) #[1. 1. 1.]
print(arr_as) #[1. 1. 1.]
 
"""
这边区别就出来了。修改原始序列后,
np.array()产生的数组不变,
但是np.asarray()产生的数组发生了变化
"""
data[1]=2
print(arr_ar) #[1. 1. 1.]
print(arr_as) #[1. 2. 1.]  !!!
 
"""
这边也有区别,修改array产生的数组,不影响原始序列
修改asarray产生的数组,会影响原始序列
"""
#此时data=[1. 2. 1.]
arr_ar[2]=3
print(data)  #[1. 2. 1.]
arr_as[2]=3
print(data)  #[1. 2. 3.]

我们总结一下:

相同点:array和asarray都可以将数组转化为ndarray对象。

区别:当参数为一般数组时,两个函数结果相同;当参数本身就是ndarray类型时,array会新建一个ndarray对象,作为参数的副本,但是asarray不会新建,而是与参数共享同一个内存。重点就是这个共享内存。

3.Numpy.ndarray()

这是最近在一个项目里看到的用法,搜索了一下用法,只在stackoverflow看到了一个问题:“What is the difference between ndarray and array in numpy?”。

地址如下:https://stackoverflow.com/questions/15879315/what-is-the-difference-between-ndarray-and-array-in-numpy

numpy.array只是一个创建ndarray的便利函数;它本身不是一个类。他讲到也可以使用numpy.ndarray创建一个数组,但这不是推荐的方法。 numpy.ndarray() 是一个类,而numpy.array() 是一个创建ndarray的方法/函数。

在numpy docs中,如果你想从ndarray类创建一个数组,你可以用引用的2种方式来做:

(1).using array(), zeros() or empty() methods: Arrays should be constructed using array, zeros or empty (refer to the See Also section below). The parameters given here refer to a low-level method (ndarray(…)) for instantiating an array.【1-使用array(), zeros()或empty()方法:数组应该使用array, zeros()或empty()构造。这里给出的参数引用用于实例化数组的低级方法(ndarray(…))。】

(2).from ndarray class directly: There are two modes of creating an array using new: If buffer is None, then only shape, dtype, and order are used. If buffer is an object exposing the buffer interface, then all keywords are interpreted.【2-来自ndarray类:使用new创建数组有两种模式:如果buffer是None,则只使用shape,dtype和order。 如果buffer是公开buffer接口的对象,则解释所有关键字。】

所以说老老实实用numpy.array()吧。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程网。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

聊聊Numpy.array中[:]和[::]的区别在哪

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

聊聊Python中end=和sep=的区别

end: 默认是换行,表示两个字符串最后以什么结尾。 eg: 换行 end="\n" sep: 默认是空格,表示两个字符串之间用什么分割。 eg: 空格 sep=" "补充:python 中的 print(x, end=) 和 print(
2022-06-02

聊聊git和github的区别

Git是一种分布式版本控制系统,它能够记录代码的变化并帮助开发者管理版本的历史记录。Git的创建者是Linus Torvalds,它于2005年发布并在开源社区中推广,现在已成为开发者们最常用的版本控制工具之一。GitHub则是一个在线代码
2023-10-22

Numpy.array中[:]和[::]的区别有哪些

小编给大家分享一下Numpy.array中[:]和[::]的区别有哪些,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!array([:])>>> import nu
2023-06-15

聊聊python dropna()和notnull()的用法区别

`dropna()`和`notnull()`是pandas库中用于处理缺失值的函数,它们的用法和功能有一些区别。`dropna()`是pandas库中DataFrame和Series对象的一个方法,用于删除含有缺失值的行或列。它的主要功能是
2023-08-16

聊聊码云和gitee的区别是什么

码云和gitee是当前国内最受欢迎的两个代码托管平台,二者许多人会认为他们是一样的,但实际上,它们在某些功能和用法方面还是存在一些差异的。下面,我们就来探讨一下码云和gitee的几个不同之处。管理者背景首先,码云和gitee的背景不同。码云
2023-10-22

聊聊python中not 与 is None的区别

原因: list 获得的数据为空: 显示值为 [ ]不同的判断--- is None----not两者结果不一样分析:总之: not 判断的是内容,而is None则涉及到这个 list 或 dict 是否声明并定义 补充:关于Python
2022-06-02

聊聊Python 3 的字符串:str 和 bytes 的区别

Python2的字符串有两种:str 和 unicode,Python3的字符串也有两种:str 和 bytes。Python2 的 str 相当于 Python3 的bytes,而unicode相当于Python3的str。Python2
2023-06-02

聊聊gitlab免费版和收费版本有哪些区别

随着软件行业的不断发展,管理代码库和版本控制成为开发人员的必备技能。在这个领域,Git是目前最流行和广泛使用的版本控制系统之一。在Git之上,有许多基于Web的代码管理平台,比如Github、Bitbucket和Gitlab等。在这个文章中
2023-10-22

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录