我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Mysql树形结构的数据库表设计方案

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Mysql树形结构的数据库表设计方案

前言

最近研究树形菜单网上找了很多例子看了。一下是网上找的一些资料,然后自己重新实践,记录下免得下次又忘记了。

程序设计过程中,我们常常用树形结构来表征某些数据的关联关系,如企业上下级部门、栏目结构、商品分类等等,通常而言,这些树状结构需要借助于数据库完成持久化。然而目前的各种基于关系的数据库,都是以二维表的形式记录存储数据信息,因此是不能直接将Tree存入DBMS,设计合适的Schema及其对应的CRUD算法是实现关系型数据库中存储树形结构的关键。

理想中树形结构应该具备如下特征:数据存储冗余度小、直观性强;检索遍历过程简单高效;节点增删改查CRUD操作高效。无意中在网上搜索到一种很巧妙的设计,原文是英文,看过后感觉有点意思,于是便整理了一下。本文将介绍两种树形结构的Schema设计方案:一种是直观而简单的设计思路,另一种是基于左右值编码的改进方案。

一、基本数据

本文列举了一个食品族谱的例子进行讲解,通过类别、颜色和品种组织食品,树形结构图如下:

这里写图片描述

二、继承关系驱动的设计

对树形结构最直观的分析莫过于节点之间的继承关系上,通过显示地描述某一节点的父节点,从而能够建立二维的关系表,则这种方案的Tree表结构通常设计为:{Node_id,Parent_id},上述数据可以描述为如下图所示:

这里写图片描述

这种方案的优点很明显:设计和实现自然而然,非常直观和方便。缺点当然也是非 常的突出:由于直接地记录了节点之间的继承关系,因此对Tree的任何CRUD操作都将是低效的,这主要归根于频繁的“递归”操作,递归过程不断地访问数据库,每次数据库IO都会有时间开销。当然,这种方案并非没有用武之地,在Tree规模相对较小的情况下,我们可以借助于缓存机制来做优化,将Tree的信息载入内存进行处理,避免直接对数据库IO操作的性能开销。

三、基于左右值编码的设计

在基于数据库的一般应用中,查询的需求总要大于删除和修改。为了避免对于树形结构查询时的“递归”过程,基于Tree的前序遍历设计一种全新的无递归查询、无限分组的左右值编码方案,来保存该树的数据。

这里写图片描述

第一次看见这种表结构,相信大部分人都不清楚左值(Lft)和右值(Rgt)是如何计算出来的,而且这种表设计似乎并没有保存父子节点的继承关系。但当你用手指指着表中的数字从1数到18,你应该会发现点什么吧。对,你手指移动的顺序就是对这棵树进行前序遍历的顺序,如下图所示。当我们从根节点Food左侧开始,标记为1,并沿前序遍历的方向,依次在遍历的路径上标注数字,最后我们回到了根节点Food,并在右边写上了18。

这里写图片描述

依据此设计,我们可以推断出所有左值大于2,并且右值小于11的节点都是Fruit的后续节点,整棵树的结构通过左值和右值存储了下来。然而,这还不够,我们的目的是能够对树进行CRUD操作,即需要构造出与之配套的相关算法。

四、树形结构CRUD算法

(1)获取某节点的子孙节点

只需要一条SQL语句,即可返回该节点子孙节点的前序遍历列表,以Fruit为例:

SELECT * FROM tree WHERE lft BETWEEN 2 AND 11 ORDER BY lft ASC

查询结果如下所示:

这里写图片描述

那么某个节点到底有多少的子孙节点呢?通过该节点的左、右值我们可以将其子孙节点圈进来,则子孙总数 = (右值 – 左值– 1) / 2,以Fruit为例,其子孙总数为:(11 –2 – 1) / 2 = 4。同时,为了更为直观地展现树形结构,我们需要知道节点在树中所处的层次,通过左、右值的SQL查询即可实现,以Fruit为例:SELECTCOUNT(*) FROM tree WHERE lft <= 2 AND rgt >=11。为了方便描述,我们可以为Tree建立一个视图,添加一个层次数列,该列数值可以写一个自定义函数来计算,函数定义如下:

创建表


CREATE TABLE `tree` (
  `id` int(11) NOT NULL,
  `name` varchar(255) DEFAULT NULL,
  `lft` int(255) DEFAULT NULL,
  `rgt` int(11) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

INSERT INTO `jpa`.`tree` (`id`, `name`, `lft`, `rgt`) VALUES ('1', 'Food', '1', '18');
INSERT INTO `jpa`.`tree` (`id`, `name`, `lft`, `rgt`) VALUES ('2', 'Fruit', '2', '11');
INSERT INTO `jpa`.`tree` (`id`, `name`, `lft`, `rgt`) VALUES ('3', 'Red', '3', '6');
INSERT INTO `jpa`.`tree` (`id`, `name`, `lft`, `rgt`) VALUES ('4', 'Cherry', '4', '5');
INSERT INTO `jpa`.`tree` (`id`, `name`, `lft`, `rgt`) VALUES ('5', 'Yellow', '7', '10');
INSERT INTO `jpa`.`tree` (`id`, `name`, `lft`, `rgt`) VALUES ('6', 'Banana', '8', '9');
INSERT INTO `jpa`.`tree` (`id`, `name`, `lft`, `rgt`) VALUES ('7', 'Meat', '12', '17');
INSERT INTO `jpa`.`tree` (`id`, `name`, `lft`, `rgt`) VALUES ('8', 'Beef', '13', '14');
INSERT INTO `jpa`.`tree` (`id`, `name`, `lft`, `rgt`) VALUES ('9', 'Pork', '15', '16');

CREATE VIEW `treeview` AS 
SELECT 
  `a`.`id` AS `id`,
  `a`.`name` AS `name`,
  `a`.`lft` AS `lft`,
  `a`.`rgt` AS `rgt`,
  `CountLayer` (`a`.`id`) AS `layer` 
FROM
  `tree` `a` 

基于层次计算函数,我们创建一个视图,添加了新的记录节点层次的数列:


> CREATE FUNCTION `CountLayer` (`node_id` INT) RETURNS INT (11) 
BEGIN
    DECLARE result INT (10) DEFAULT 0 ;
    DECLARE lftid INT;
    DECLARE rgtid INT;
    SELECT lft,rgt INTO lftid, rgtid FROM tree WHERE id = node_id;
    SELECT COUNT(*) INTO result  FROM tree WHERE lft <= lftid AND rgt >= rgtid;
    RETURN (result);
END

创建存储过程,用于计算给定节点的所有子孙节点及相应的层次:


CREATE  PROCEDURE `GetChildrenNodeList`(IN `node_id` INT)
BEGIN
DECLARE lftid INT;
DECLARE rgtid INT;
SELECT lft,rgt INTO lftid,rgtid FROM tree WHERE id= node_id;
SELECT * FROM treeview WHERE lft BETWEEN lftid AND rgtid ORDER BY lft ASC;
END 

 现在,我们使用上面的存储过程来计算节点Fruit所有子孙节点及对应层次,查询结果如下:

这里写图片描述

从上面的实现中,我们可以看出采用左右值编码的设计方案,在进行树的查询遍历时,只需要进行2次数据库查询,消除了递归,再加上查询条件都是数字的比较,查询的效率是极高的,随着树规模的不断扩大,基于左右值编码的设计方案将比传统的递归方案查询效率提高更多。当然,前面我们只给出了一个简单的获取节点子孙的算法,真正地使用这棵树我们需要实现插入、删除同层平移节点等功能。

(2)获取某节点的族谱路径

假定我们要获得某节点的族谱路径,则根据左、右值分析只需要一条SQL语句即可完成,以Fruit为例:SELECT* FROM tree WHERE lft < 2 AND rgt > 11 ORDER BY lft ASC ,相对完整的存储过程:


CREATE PROCEDURE `GetParentNodePath`(IN `node_id` INT)
BEGIN
DECLARE lftid INT;
DECLARE rgtid INT;
SELECT lft,rgt INTO lftid,rgtid FROM tree WHERE id= node_id;
SELECT * FROM treeview WHERE lft < lftid AND rgt > rgtid ORDER BY lft ASC;
END

(3)为某节点添加子孙节点

      假定我们要在节点“Red”下添加一个新的子节点“Apple”,该树将变成如下图所示,其中红色节点为新增节点。

这里写图片描述


CREATE  PROCEDURE `AddSubNode`(IN `node_id` INT,IN `node_name` VARCHAR(64))
BEGIN
   DECLARE rgtid INT;
   DECLARE t_error INT DEFAULT 0;  
   DECLARE CONTINUE HANDLER FOR SQLEXCEPTION SET t_error=1; -- 出错处理 
   SELECT rgt INTO rgtid FROM tree WHERE id= node_id; 
   START TRANSACTION;
        UPDATE tree SET rgt = rgt + 2 WHERE rgt >= rgtid;
        UPDATE tree SET lft = lft + 2 WHERE lft >= rgtid;
        INSERT INTO tree (NAME,lft,rgt) VALUES(node_name,rgtid,rgtid+1);    
    IF t_error =1 THEN  
     ROLLBACK;
    ELSE
      COMMIT;
    END IF;
END 

(4)删除某节点

      如果我们想要删除某个节点,会同时删除该节点的所有子孙节点,而这些被删除的节点的个数为:(被删除节点的右值 – 被删除节点的左值+ 1) / 2,而剩下的节点左、右值在大于被删除节点左、右值的情况下会进行调整。来看看树会发生什么变化,以Beef为例,删除效果如下图所示。

这里写图片描述

则我们可以构造出相应的存储过程:


CREATE PROCEDURE `DelNode`(IN `node_id` INT)
BEGIN
   DECLARE lftid INT;
     DECLARE rgtid INT;
   DECLARE t_error INT DEFAULT 0;  
   DECLARE CONTINUE HANDLER FOR SQLEXCEPTION SET t_error=1; -- 出错处理 
   SELECT lft,rgt INTO lftid,rgtid FROM tree WHERE id= node_id;
   START TRANSACTION;
       DELETE FROM tree WHERE lft >= lftid AND rgt <= rgtid;
       UPDATE tree SET lft = lft -(rgtid - lftid  + 1) WHERE lft > lftid;
       UPDATE tree SET rgt = rgt -(rgtid - lftid  + 1) WHERE rgt >rgtid;
    IF t_error =1 THEN  
     ROLLBACK;
    ELSE
      COMMIT;
    END IF;

END 

五、总结

我们可以对这种通过左右值编码实现无限分组的树形结构Schema设计方案做一个总结:

(1)优点:在消除了递归操作的前提下实现了无限分组,而且查询条件是基于整形数字的比较,效率很高。

(2)缺点:节点的添加、删除及修改代价较大,将会涉及到表中多方面数据的改动。

参考文献

https://www.jb51.net/article/223579.htm

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Mysql树形结构的数据库表设计方案

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

MySql树形结构(多级菜单)查询设计方案

目录背景三级查询(层级固定,层级数少)多级查询(层级不固定/层级很深)遍历整个树:节点搜索(查找出这个节点所在的整个分支)总结背景又android很久没更新了,很幸运地新冠引发了严重的上呼吸道感染,大家羊过后注意休息和防护工作中(尤其是
2023-03-03

MySQL中的常用树形结构设计总结

目录常用树形结构设计总结1. 递归表2.路径枚举3.数据与关系分开存mysql树形结构(多级菜单)查询设计方案三级查询(层级固定,层级数少)多级查询(层级不固定/层级很深)总结常用树形结构设计总结开发中,经常会遇到树形结构的设计,所谓的树
2023-03-03

树形结构的菜单表设计与查询

开发中经常会遇到树形结构的场景,比如:导航菜单、组织机构等等,但凡是有这种父子层级结构的都是如此,一级类目、二级类目、三级类目。。。对于这种树形结构的表要如何设计呢?接下来一起探讨一下首先,想一个问题,用非关系型数据库存储可不可以?答案是肯定可以的,比如用mo
树形结构的菜单表设计与查询
2016-09-24

MySQL查询树形结构数据的两种方法

目录1. 递归查询2. 闭包表对于mysql查android询树形结构,可以使用递归查询或者闭包表来实现。以下是两种常用的方法:1. 递归查询使用递归查询可以遍历树形结构,获取父节点和子节点的关系。假设有一个名为 your_table
MySQL查询树形结构数据的两种方法
2023-11-11

MySQL中的常用树形结构设计是什么

今天小编给大家分享一下MySQL中的常用树形结构设计是什么的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。1. 递归表idpi
2023-07-05

左右值编码树形结构数据存储方案

最近在工作中业务需要,了解了左右值编码的树形结构存储方案,仔细研究了一下,整理了一个笔记分享给大家,如有错误之处望指出。 一、左右值编码 在基于数据库的一般应用中,查询的需求总要大于删除和修改。为了避免对于树形结构查询时的“递归”过程,基于Tree的前序遍历设
左右值编码树形结构数据存储方案
2017-03-10

数据库-表结构设计性能优化

在进行数据库表结构设计时,最优性能设计建议如下:1、客户端IP两种存储方式(不考虑ipv6):? ? 1)、int? ? 2)、 char(10)? ? 性能上考虑推荐使用int。2、有些表的电话号码 改成varchar(12),严格上使用char(11),有
数据库-表结构设计性能优化
2018-02-21

springboot构造树形结构数据并查询的方法是什么

本篇内容主要讲解“springboot构造树形结构数据并查询的方法是什么”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“springboot构造树形结构数据并查询的方法是什么”吧!因为项目需要,页
2023-06-25

编程热搜

目录