怎么用pytorch膨胀算法实现大眼效果
本篇内容主要讲解“怎么用pytorch膨胀算法实现大眼效果”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“怎么用pytorch膨胀算法实现大眼效果”吧!
算法思路:
以眼睛中心为中心点,对眼睛区域向外放大,就实现了大眼的效果。大眼的基本公式如下,
假设眼睛中心点为O(x,y),大眼区域半径为Radius,当前点位为A(x1,y1),对其进行改进,加入大眼程度控制变量Intensity,其中Intensity的取值范围为0~100。
其中,dis表示AO的欧式距离,k表示缩放比例因子,k0表示大眼程度,xd,yd表示A点经过大眼变换后的目标点B的坐标。
当k=0时,目标点B与O点重合。
当k=1时,目标点B与A点重合。
当k<1.0时,目标点B的计算函数单调递增,眼睛放大。
当k>1.0时,目标点B的计算函数单调递减,眼睛缩小。
人眼半径求法,
根据眼睛左右2个关键点来计算大眼区域所在的半径Radius
大眼程度Intensity求法,
根据图像分辨率,结合实际经验来计算大眼程度Intensity。
比如Intensity = 15*512*512/(width*height)
应用场景:
适用于任何球形局部形变的场景,比如大眼,比如嘴唇微笑。
代码实现:
import cv2import mathimport numpy as np def big_eye_adjust_fast(class="lazy" data-src, PointX, PointY, Radius, Strength): processed_image = np.zeros(class="lazy" data-src.shape, np.uint8) processed_image = class="lazy" data-src.copy() height = class="lazy" data-src.shape[0] width = class="lazy" data-src.shape[1] PowRadius = Radius * Radius maskImg = np.zeros(class="lazy" data-src.shape[:2], np.uint8) cv2.circle(maskImg, (PointX, PointY), math.ceil(Radius), (255, 255, 255), -1) mapX = np.vstack([np.arange(width).astype(np.float32).reshape(1, -1)] * height) mapY = np.hstack([np.arange(height).astype(np.float32).reshape(-1, 1)] * width) OffsetX = mapX - PointX OffsetY = mapY - PointY XY = OffsetX * OffsetX + OffsetY * OffsetY ScaleFactor = 1 - XY / PowRadius ScaleFactor = 1 - Strength / 100 * ScaleFactor UX = OffsetX * ScaleFactor + PointX UY = OffsetY * ScaleFactor + PointY UX[UX < 0] = 0 UX[UX >= width] = width - 1 UY[UY < 0] = 0 UY[UY >= height] = height - 1 np.copyto(UX, mapX, where=maskImg == 0) np.copyto(UY, mapY, where=maskImg == 0) UX = UX.astype(np.float32) UY = UY.astype(np.float32) processed_image = cv2.remap(class="lazy" data-src, UX, UY, interpolation=cv2.INTER_LINEAR) return processed_image image = cv2.imread("tests/images/klst.jpeg")processed_image = image.copy()PointX_left, PointY_left, Radius_left, Strength_left = 150, 190, 44, 19.78PointX_right, PointY_right, Radius_right, Strength_right = 244, 194, 42, 19.78processed_image = big_eye_adjust_fast(processed_image, PointX_left, PointY_left, Radius_left, Strength_left)processed_image = big_eye_adjust_fast(processed_image, PointX_right, PointY_right, Radius_right, Strength_right)cv2.imwrite("big.jpg", processed_image)
实验效果:
到此,相信大家对“怎么用pytorch膨胀算法实现大眼效果”有了更深的了解,不妨来实际操作一番吧!这里是编程网网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341