我的编程空间,编程开发者的网络收藏夹
学习永远不晚

用python爬取分析淘宝商品信息详解技术篇

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

用python爬取分析淘宝商品信息详解技术篇

Tip:本文仅供学习与交流,切勿用于非法用途!!!

背景介绍

有个同学问我:“XXX,有没有办法搜集一下淘宝的商品信息啊,我想要做个统计”。于是乎,闲来无事的我,又开始琢磨起这事…

在这里插入图片描述

一、模拟登陆

兴致勃勃的我,冲进淘宝就准备一顿乱搜:

在这里插入图片描述

在搜索栏里填好关键词:“显卡”,小手轻快敲击着回车键(小样~看我的)
心情愉悦的我等待着返回满满的商品信息,结果苦苦的等待换了的却是302,于是我意外地来到了登陆界面。

在这里插入图片描述

情况基本就是这么个情况了…
然后我查了一下,随着淘宝反爬手段的不断加强,很多小伙伴应该已经发现,淘宝搜索功能是需要用户登陆的!

关于淘宝模拟登陆,有大大已经利用requests成功模拟登陆(感兴趣的小伙伴请往这边>>>requests登陆淘宝<<<)
这个方法得先分析淘宝登陆的各种请求,并模拟生成相应的参数,相对来说有一定的难度。于是我决定换一种思路,通过selenium+二维码的方式:


# 打开图片
def Openimg(img_location):
    img=Image.open(img_location)
    img.show()

# 登陆获取cookies
def Login():  
    driver = webdriver.PhantomJS() 
    driver.get('https://login.taobao.com/member/login.jhtml')
    try:
        driver.find_element_by_xpath('/*;q=0.8',
           'Accept-Language':'zh-CN,zh;q=0.8,zh-TW;q=0.7,zh-HK;q=0.5,en-US;q=0.3,en;q=0.2',
           'Accept-Encoding':'gzip, deflate, br',
           'Connection':'keep-alive'}
list_url = 'http://s.taobao.com/search?q=%(key)s&ie=utf8&s=%(page)d'

2. 分析并定义正则

当请求得到HTML页面后,想要得到我们想要的数据就必须得对其进行提取,这里我选择了正则的方式。通过查看页面源码:

在这里插入图片描述

偷懒的我上面只标志了两个数据,不过其他也是类似的,于是得到以下正则:


# 正则模式
p_title = '"raw_title":"(.*?)"'       #标题
p_location = '"item_loc":"(.*?)"'    #销售地
p_sale = '"view_sales":"(.*?)人付款"' #销售量
p_comment = '"comment_count":"(.*?)"'#评论数
p_price = '"view_price":"(.*?)"'     #销售价格
p_nid = '"nid":"(.*?)"'              #商品唯一ID
p_img = '"pic_url":"(.*?)"'          #图片URL

(ps.聪明的小伙伴应该已经发现了,其实商品信息是被保存在了g_page_config变量里面,所以我们也可以先提取这个变量(一个字典),然后再读取数据,也可!)

3. 数据爬取

完事具备,只欠东风。于是,东风来了:


# 数据爬取
key = input('请输入关键字:') # 商品的关键词
N = 20 # 爬取的页数 
data = []
cookies = Login()
for i in range(N):
    try:
        page = i*44
        url = list_url%{'key':key,'page':page}
        res = requests.get(url,headers=headers,cookies=cookies)
        html = res.text
        title = re.findall(p_title,html)
        location = re.findall(p_location,html)
        sale = re.findall(p_sale,html)
        comment = re.findall(p_comment,html)
        price = re.findall(p_price,html)
        nid = re.findall(p_nid,html)
        img = re.findall(p_img,html)
        for j in range(len(title)):
            data.append([title[j],location[j],sale[j],comment[j],price[j],nid[j],img[j]])
        print('-------Page%s complete!--------\n\n'%(i+1))
        time.sleep(3)
    except:
        pass
data = pd.DataFrame(data,columns=['title','location','sale','comment','price','nid','img'])
data.to_csv('%s.csv'%key,encoding='utf-8',index=False)

上面代码爬取20也商品信息,并将其保存在本地的csv文件中,效果是这样的:

在这里插入图片描述

三、简单数据分析

有了数据,放着岂不是浪费,我可是社会主义好青年,怎能做这种事? 那么,就让我们来简单看看这些数据叭:
(当然,数据量小,仅供娱乐参考)

1.导入库


# 导入相关库
import jieba
import operator
import pandas as pd
from wordcloud import WordCloud
from matplotlib import pyplot as plt

相应库的安装方法(其实基本都能通过pip解决):

  • jieba
  • pandas
  • wordcloud
  • matplotlib

2.中文显示


# matplotlib中文显示
plt.rcParams['font.family'] = ['sans-serif']
plt.rcParams['font.sans-serif'] = ['SimHei']

不设置可能出现中文乱码等闹心的情况哦~

3.读取数据


# 读取数据
key = '显卡'
data = pd.read_csv('%s.csv'%key,encoding='utf-8',engine='python')

4.分析价格分布


# 价格分布
plt.figure(figsize=(16,9))
plt.hist(data['price'],bins=20,alpha=0.6)
plt.title('价格频率分布直方图')
plt.xlabel('价格')
plt.ylabel('频数')
plt.savefig('价格分布.png')

价格频率分布直方图:

在这里插入图片描述

5.分析销售地分布


# 销售地分布
group_data = list(data.groupby('location'))
loc_num = {}
for i in range(len(group_data)):
    loc_num[group_data[i][0]] = len(group_data[i][1])
plt.figure(figsize=(19,9))
plt.title('销售地')
plt.scatter(list(loc_num.keys())[:20],list(loc_num.values())[:20],color='r')
plt.plot(list(loc_num.keys())[:20],list(loc_num.values())[:20])
plt.savefig('销售地.png')
sorted_loc_num = sorted(loc_num.items(), key=operator.itemgetter(1),reverse=True)#排序
loc_num_10 = sorted_loc_num[:10]  #取前10
loc_10 = []
num_10 = []
for i in range(10):
    loc_10.append(loc_num_10[i][0])
    num_10.append(loc_num_10[i][1])
plt.figure(figsize=(16,9))
plt.title('销售地TOP10')
plt.bar(loc_10,num_10,facecolor = 'lightskyblue',edgecolor = 'white')
plt.savefig('销售地TOP10.png')

销售地分布:

在这里插入图片描述

销售地TOP10:

在这里插入图片描述

6.词云分析


# 制作词云
content = ''
for i in range(len(data)):
    content += data['title'][i]
wl = jieba.cut(content,cut_all=True)
wl_space_split = ' '.join(wl)
wc = WordCloud('simhei.ttf',
               background_color='white', # 背景颜色
               width=1000,
               height=600,).generate(wl_space_split)
wc.to_file('%s.png'%key)

淘宝商品”显卡“的词云:

在这里插入图片描述

写在最后

感谢各位大大的耐心阅读~

到此这篇关于用python爬取分析淘宝商品信息详解技术篇的文章就介绍到这了,更多相关python爬取淘宝商品信息内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

用python爬取分析淘宝商品信息详解技术篇

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

使用Python怎么爬取淘宝的商品信息

这期内容当中小编将会给大家带来有关使用Python怎么爬取淘宝的商品信息,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。python有哪些常用库python常用的库:1.requesuts;2.scrapy
2023-06-14

python项目实战:利用selenium+浏览器爬取淘宝商品信息

前言今天为大家介绍一个Python利用selenium打开浏览器的方式来爬取淘宝商品的信息,下面就来看看,关于selenium的知识点,是如何做到控制浏览器获取网站的信息导入第三方库
2023-06-02

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录