我的编程空间,编程开发者的网络收藏夹
学习永远不晚

详解Pytorch如何利用yaml定义卷积网络

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

详解Pytorch如何利用yaml定义卷积网络

大多数卷积神经网络都是直接通过写一个Model类来定义的,这样写的代码其实是比较好懂的,特别是在魔改网络的时候也很方便。然后也有一些会通过cfg配置文件进行模型的定义。在yolov5中可以看到是通过yaml文件进行网络的定义【个人感觉通过配置文件魔改网络有些不方便,当然每个人习惯不同】,可能很多人也用过,如果自己去写一个yaml文件,自己能不能定义出来呢?很多人不知道是如何具体通过yaml文件将里面的参数传入自己定义的网络中,这也就给自己修改网络带来了不便。这篇文章将仿照yolov5的方式,利用yaml定义一个自己的网络。

定义卷积块

我们可以先定义一个卷积块CBL,C指卷积Conv,B指BN层,L为激活函数,这里我用ReLu.

class BaseConv(nn.Module):
    def __init__(self, in_channels, out_channels, k=1, s=1, p=None):
        super().__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.conv = nn.Conv2d(in_channels, out_channels, k, s, autopad(k, p))
        self.bn = nn.BatchNorm2d(out_channels)
        self.act_fn = nn.ReLU(inplace=True)
 
    def forward(self, x):
        return self.act_fn(self.bn(self.conv(x)))

卷积中的autopad是自动补充pad,代码如下:

def autopad(k, p=None):
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]
    return p

定义一个Bottleneck 

可以仿照yolov5定义一个Bottleneck,参考了残差块的思想。

class Bottleneck(nn.Module):
    def __init__(self, in_channels, out_channels, shortcut=True):
        super(Bottleneck, self).__init__()
        self.conv1 = BaseConv(in_channels, out_channels, k=1, s=1)
        self.conv2 = BaseConv(out_channels, out_channels, k=3, s=1)
        self.add = shortcut and in_channels == out_channels
 
    def forward(self, x):
        """
        x-->conv1-->conv2-->add
          |_________________|
        """
        return x + self.conv2(self.conv1(x)) if self.add else self.conv2(self.conv1(x))

攥写yaml配置文件

然后我们来写一下yaml配置文件,网络不要很复杂,就由两个卷积和两个Bottleneck组成就行。同理,仿v5的方法,我们的网络中的backone也是个列表,每行为一个卷积层,每列有4个参数,分别代表from(指该层的输入通道数为上一层的输出通道数,所以是-1),number【yaml中的1,1,2指该层的深度,或者说是重复几次】,Module_nams【该层的名字】,args【网络参数,包含输出通道数,k,s,p等设置】

# define own model
backbone:
  [[-1, 1, BaseConv, [32, 3, 1]],  # out_channles=32, k=3, s=1
   [-1, 1, BaseConv, [64, 1, 1]],
   [-1, 2, Bottleneck, [64]]
  ]

我们现在用yaml工具来打开我们的配置文件,看看都有什么内容

    import yaml
    # 获得yaml文件名字
    yaml_file = Path('Model.yaml').name
    with open(yaml_file,errors='ignore') as f:
        yaml_ = yaml.safe_load(f)
    print(yaml_)

输出: 

 {'backbone': [[-1, 1, 'BaseConv', [32, 3, 1]], [-1, 1, 'BaseConv', [64, 1, 1]], [-1, 2, 'Bottleneck', [64]]]}

然后我们可以定义下自己Model类,也就是定义自己的网络。可以看到与前面读取yaml文件相比,多了一行    ch = self.yaml["ch"] = self.yaml["ch"] = 3   这个是在原yaml内容中加入一个key和valuse,3指的3通道,因为我们的图像是3通道。parse_model是下面要说的传参过程。

class Model(nn.Module):
    def __init__(self, cfg='./Model.yaml', ch=3, ):
        super().__init__()
        self.yaml = cfg
        import yaml
        yaml_file = Path(cfg).name
        with open(yaml_file, errors='ignore')as f:
            self.yaml = yaml.safe_load(f)
 
        ch = self.yaml["ch"] = self.yaml["ch"] = 3
        self.backbone = parse_model(deepcopy(self.yaml), ch=[ch])
 
    def forward(self, x):
        output = self.backbone(x)
        return output

传入参数

这一步也是最关键的一步,我们需要定义传参的函数,将yaml中的卷积参数传入我们定义的网络中,这里会用的一个非常非常重要的函数eval(),后面也会介绍到这个函数的用法。

这里先附上完整代码:

def parse_model(yaml_cfg, ch):
    """
    :param yaml_cfg: yaml file
    :param ch: init in_channels default is 3
    :return: model
    """
 
    layer, out_channels = [], ch[-1]
    for i, (f, number, Module_name, args) in enumerate(yaml_cfg['backbone']):
        """
        f:上一层输出通道
        number:该模块有几层,就是该模块要重复几次
        Mdule_name:卷积层名字
        args:参数,包含输出通道数,k,s,p等
        """
        # 通过eval,将str类型转自己定义的BaseConv
        m = eval(Module_name) if isinstance(Module_name, str) else Module_name
        for j, a in enumerate(args):
            # 通过eval,将str转int,获得输出通道数
            args[j] = eval(a) if isinstance(a, str) else a
        # 更新通道
        # args[0]是输出通道
        if m in [BaseConv, Bottleneck]:
            in_channels, out_channels = ch[f], args[0]
            args = [in_channels, out_channels, *args[1:]]  # args=[in_channels, out_channels, k, s, p]
 
        # 将参数传入模型
        model_ = nn.Sequential(*[m(*args) for _ in range(number)]) if number > 1 else m(*args)
        # 更新通道列表,每次获取输出通道
        ch.append(out_channels)
        layer.append(model_)
    return nn.Sequential(*layer)

下面开始分析代码 。

这行代码是通过列表用来存放每层内容以及输出通道数。

# 这行代码是通过列表用来存放每层内容以及输出通道数
layer, out_channels = [], ch[-1]

然后进入我们的for循环,在每一次循环中可以获得我们yaml文件中的每一层网络:f是上一层网络的输出通道【用来作为本层的输入通道】,number【网络深度,也就是该层重复几次而已】,Module_name是该层的名字,args是该层的一些参数。

for i, (f, number, Module_name, args) in enumerate(yaml_cfg['backbone']):

接下来会碰到一个很重要的函数eval()。下行的代码首先需要判断一下我们的Module_name类型是不是字符串类型,也就是判断一下yaml中“BaseConv”是不是字符串类型,如果是,则用eval进行对应类型的转化,转成我们的BaseConv类型。 

m = eval(Module_name) if isinstance(Module_name, str) else Module_name

这里我将对eval函数在深入点,如果知道这个函数用法的,就可以略去这部分。

我们先举个例子,比如我现在有个变量a="123",这个a的类型是什么呢?他是一个str类型,不是int类型。 现在我们用eval函数转一下,看看会变成什么样子。

>>> b = eval(a) if isinstance(a,str) else a
>>> b
123
>>> type(b)
<class 'int'>

我们可以看到,经过eval函数以后,会自动识别并转为int类型。那么我继续举例子,如果现在a="BaseConv",经过eval以后会变成什么?可以看到,这里报错了!这是为什么?这是因为我们没有导入BaseConv这个类,所以eval函数并不知道我们希望转为什么类型。所以我们需要用import导入BaseConv这个类才可以。

>>> a="BaseConv"
>>> b = eval(a) if isinstance(a,str) else a
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<string>", line 1, in <module>
NameError: name 'BaseConv' is not defined

当我们导入BaseConv以后,在经过eval就可以获得:

<class 'models.BaseConv'> 

接下来是获得args中的网络参数,也是通过eval进行转化

        for j, a in enumerate(args):
            # 通过eval,将str转int,获得输出通道数
            args[j] = eval(a) if isinstance(a, str) else a

获取通道数,并在每次循环中对通道进行更新:可以仔细看一下ch[f]指的上一层输出通道,刚开始默认为[3],那么ch[-1]=3,我们yaml中第一层的BaseConv args[0]为32,表示输出32通道。因此在第一次循环中有in_channels = 3,out_channels=32。args也要更新,*args前面的"*"并不是指针的意思,也不是乘的意思,而是解压操作,因此我们第一次循环中得到的args=[3,32,3,1]。

# 更新通道
# args[0]是输出通道
if m in [BaseConv, Bottleneck]:
    in_channels, out_channels = ch[f], args[0]
    args = [in_channels, out_channels, *args[1:]]  # args=[in_channels, out_channels, k, s, p]

将参数传入模型

这里用for _ in range(number)来判断网络的深度【或者说该模块重复几次】,这里的m就是前面经过eval转化的 <class 'models.BaseConv'>。通过*args解压操作将args列表中的内容放入m中,再通过*解压操作放入nn.Sequential。

model_ = nn.Sequential(*[m(*args) for _ in range(number)]) if number > 1 else m(*args)

这样就可以获得我们第一次循环BaseConv了。后面的循环也是同样的反复操作而已。

BaseConv(
  (conv): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (act_fn): ReLU(inplace=True)
)

然后是更新通道列表和layer列表,为的是获取每次循环的输出通道,没有这一步,再下一次循环的时候将不能正确得到通道数。

# 更新通道列表,每次获取输出通道
ch.append(out_channels)
layer.append(model_)

然后我们就可以对模型调用进行实例化了,可以打印下模型:

Model(
  (backbone): Sequential(
    (0): BaseConv(
      (conv): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act_fn): ReLU(inplace=True)
    )
    (1): BaseConv(
      (conv): Conv2d(32, 64, kernel_size=(1, 1), stride=(1, 1))
      (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act_fn): ReLU(inplace=True)
    )
    (2): Sequential(
      (0): Bottleneck(
        (conv1): BaseConv(
          (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
          (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act_fn): ReLU(inplace=True)
        )
        (conv2): BaseConv(
          (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act_fn): ReLU(inplace=True)
        )
      )
      (1): Bottleneck(
        (conv1): BaseConv(
          (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
          (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act_fn): ReLU(inplace=True)
        )
        (conv2): BaseConv(
          (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act_fn): ReLU(inplace=True)
        )
      )
    )
  )
)

同时我们也可以对模型每层可视化看一下。可以看到和我们定义的模型是一样的。

完整的代码

from copy import deepcopy
 
from models import BaseConv, Bottleneck
import torch.nn as nn
import os
 
path = os.getcwd()
from pathlib import Path
import torch
 
 
def parse_model(yaml_cfg, ch):
    """
    :param yaml_cfg: yaml file
    :param ch: init in_channels default is 3
    :return: model
    """
 
    layer, out_channels = [], ch[-1]
    for i, (f, number, Module_name, args) in enumerate(yaml_cfg['backbone']):
        """
        f:上一层输出通道
        number:该模块有几层,就是该模块要重复几次
        Mdule_name:卷积层名字
        args:参数,包含输出通道数,k,s,p等
        """
        # 通过eval,将str类型转自己定义的BaseConv
        m = eval(Module_name) if isinstance(Module_name, str) else Module_name
        for j, a in enumerate(args):
            # 通过eval,将str转int,获得输出通道数
            args[j] = eval(a) if isinstance(a, str) else a
        # 更新通道
        # args[0]是输出通道
        if m in [BaseConv, Bottleneck]:
            in_channels, out_channels = ch[f], args[0]
            args = [in_channels, out_channels, *args[1:]]  # args=[in_channels, out_channels, k, s, p]
 
        # 将参数传入模型
        model_ = nn.Sequential(*[m(*args) for _ in range(number)]) if number > 1 else m(*args)
        # 更新通道列表,每次获取输出通道
        ch.append(out_channels)
        layer.append(model_)
    return nn.Sequential(*layer)
 
 
class Model(nn.Module):
    def __init__(self, cfg='./Model.yaml', ch=3, ):
        super().__init__()
        self.yaml = cfg
        import yaml
        yaml_file = Path(cfg).name
        with open(yaml_file, errors='ignore')as f:
            self.yaml = yaml.safe_load(f)
 
        ch = self.yaml["ch"] = self.yaml["ch"] = 3
        self.backbone = parse_model(deepcopy(self.yaml), ch=[ch])
 
    def forward(self, x):
        output = self.backbone(x)
        return output
 
 
if __name__ == "__main__":
    cfg = path + '/Model.yaml'
    model = Model()
    model.eval()
    print(model)
    x = torch.ones(1, 3, 512, 512)
    output = model(x)
    torch.save(model, "model.pth")
 
 
 
    # model = torch.load('model.pth')
    # model.eval()
    # x = torch.ones(1,3,512,512)
    # input_name = ['input']
    # output_name = ['output']
    # torch.onnx.export(model, x, 'myonnx.onnx', verbose=True)

以上就是详解Pytorch如何利用yaml定义卷积网络的详细内容,更多关于Pytorch yaml定义卷积网络的资料请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

详解Pytorch如何利用yaml定义卷积网络

下载Word文档到电脑,方便收藏和打印~

下载Word文档

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录