我的编程空间,编程开发者的网络收藏夹
学习永远不晚

nx.adjacency_matrix计算邻接矩阵与真实结果不一致的解决

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

nx.adjacency_matrix计算邻接矩阵与真实结果不一致的解决

问题描述

我自己根据edgelist计算的邻接矩阵,与调用networkx.adjacency_matrix(g)返回的结果不一样,经过调试发现了问题原因以及解决办法,记录如下。

原来的代码

edgelist = [
        (0, 1),
        (1, 3),
        (2, 4),
        (1, 5),
        (1, 3),
        (5, 5),
        (1, 3)
    ]
"""由于nx.MultiGraph()可累计多条重复边作为权重,所以(1,3)出现3次权重是3"""
g = nx.MultiGraph()  # 无向多边图
g.add_edges_from(edgelist)
adj = sp.lil_matrix(nx.adjacency_matrix(g))
print(adj.todense())

实际运行输出

[[0 1 0 0 0 0]
 [1 0 3 0 0 1]
 [0 3 0 0 0 0]
 [0 0 0 0 1 0]
 [0 0 0 1 0 0]
 [0 1 0 0 0 1]]

理论结果

[[0 1 0 0 0 0]
 [1 0 0 3 0 1]
 [0 0 0 0 1 0]
 [0 3 0 0 0 0]
 [0 0 1 0 0 0]
 [0 1 0 0 0 1]]

节点id从0开始。对于边(1,3),矩阵的第二行第四列应当为权重3,可以看到实际运行输出结果中,3却出现在了第二行第三列!

调试过程

查看了networkx.adjacency_matrix()的源代码,其中有一条说明如下:

def adjacency_matrix(G, nodelist=None, weight='weight'):
    """Return adjacency matrix of G.

    Parameters
    ----------
    G : graph
       A NetworkX graph

    nodelist : list, optional
       The rows and columns are ordered according to the nodes in nodelist.
       If nodelist is None, then the ordering is produced by G.nodes().

    weight : string or None, optional (default='weight')
       The edge data key used to provide each value in the matrix.
       If None, then each edge has weight 1.
    				...
    				...
    """
    return nx.to_scipy_sparse_matrix(G, nodelist=nodelist, weight=weight)

第二个参数的说明需要格外注意!对于nodelist这个参数,说明是这样的:邻接矩阵的行和列的排序按照nodelist中节点顺序来!如果不传这个参数,默认是按照传进来的图G调用G.nodes()时返回的节点的顺序!

所以我查看了我传进去的图g的节点默认顺序是什么样的:

edgelist = [
        (0, 1),
        (1, 3),
        (2, 4),
        (1, 5),
        (1, 3),
        (5, 5),
        (1, 3)
    ]
"""由于nx.MultiGraph()可累计多条重复边作为权重,所以(1,3)出现3次权重是3"""
g = nx.MultiGraph()  # 无向多边图
g.add_edges_from(edgelist)
print(g.nodes())
adj = sp.lil_matrix(nx.adjacency_matrix(g))
print(adj.todense())

运行结果居然:

[0, 1, 3, 2, 4, 5]
[[0 1 0 0 0 0]
 [1 0 3 0 0 1]
 [0 3 0 0 0 0]
 [0 0 0 0 1 0]
 [0 0 0 1 0 0]
 [0 1 0 0 0 1]]

图g的节点列表居然不是按照从小到大的顺序排列,id为3的节点居然是第三而不是第四位序,这就是为什么边(1,3)的权重会写在矩阵的第三列…因为矩阵第三列对应节点3!

那…为什么图g的节点列表不是排好序的,为什么是[0, 1, 3, 2, 4, 5]这个顺序?

因为:加新边sdd_edges的时候会自动加新节点!!!

边(0,1)加进去的时候,节点列表是[0,1];加边(1, 3)的时候,节点列表[0,1,3];…。所以节点默认列表的顺序,跟你加新边时候哪个节点先出现有关系。

解决方案

那么在添加新边之前,先把节点按id从小到大顺序排好同意添加,就可以了。

具体就是:在g.add_edges_from(edgelist)操作之前,先把edgelist中的节点抽取出来按顺序排好,用操作g.add_nodes_from()把节点统一添加进图g中。修改后的代码如下:

修改后的代码

edgelist = [
        (0, 1),
        (1, 3),
        (2, 4),
        (1, 5),
        (1, 3),
        (5, 5),
        (1, 3)
    ]
"""由于nx.MultiGraph()可累计多条重复边作为权重,所以(1,3)出现3次权重是3"""
g = nx.MultiGraph()  # 无向多边图

""" 节点id按照顺序排!!否则生成的邻接矩阵不一样 """
nodeset = sorted(set(itertools.chain(*edgelist)))
g.add_nodes_from(nodeset)

g.add_edges_from(edgelist)
print(g.nodes())
adj = sp.lil_matrix(nx.adjacency_matrix(g))
print(adj.todense())

修改代码后的运行结果

[0, 1, 2, 3, 4, 5]
[[0 1 0 0 0 0]
 [1 0 0 3 0 1]
 [0 0 0 0 1 0]
 [0 3 0 0 0 0]
 [0 0 1 0 0 0]
 [0 1 0 0 0 1]]

函数说明

nodeset = sorted(set(itertools.chain(*edgelist)))这行的功能,是把edgelist中的元素展开,去重,按顺序排序。分开演示就是:

edgelist = [
        (0, 1),
        (1, 3),
        (2, 4),
        (1, 5),
        (1, 3),
        (5, 5),
        (1, 3)
    ]
""" 把edgelist中的每个(a,b)元素打平成a,b """
nodes = list(itertools.chain(*edgelist))
print(nodes)
# 输出:
# [0, 1, 1, 3, 2, 4, 1, 5, 1, 3, 5, 5, 1, 3]

""" 利用set元素唯一的性质,将重复元素去重 a,a => a """
nodeset = set(nodes)
print(nodeset)
# 输出:
# {0, 1, 2, 3, 4, 5}

""" set中的元素是无序、非空、唯一的,所以对set再sorted一下,确保顺序是对的 """
nodeset = sorted(nodeset)
print(nodeset)
# 输出:
# [0, 1, 2, 3, 4, 5]

总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程网。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

nx.adjacency_matrix计算邻接矩阵与真实结果不一致的解决

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

nx.adjacency_matrix计算邻接矩阵与真实结果不一致的解决

这篇文章主要介绍了nx.adjacency_matrix计算邻接矩阵与真实结果不一致的解决方案,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
2022-12-16

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录