我的编程空间,编程开发者的网络收藏夹
学习永远不晚

ApacheHudi结合Flink的亿级数据入湖实践解析

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

ApacheHudi结合Flink的亿级数据入湖实践解析

本次分享分为5个部分介绍Apache Hudi的应用与实践

1. 实时数据落地需求演进

实时平台上线后,主要需求是开发实时报表,即抽取各类数据源做实时etl后,吐出实时指标到oracle库中供展示查询。

随着实时平台的稳定及推广开放,各种使用人员有了更广发的需求:

  • 对实时开发来说,需要将实时sql数据落地做一些etl调试,数据取样等过程检查;
  • 数据分析、业务等希望能结合数仓已有数据体系,对实时数据进行分析和洞察,比如用户行为实时埋点数据结合数仓已有一些模型进行分析,而不是仅仅看一些高度聚合化的报表;
  • 业务希望将实时数据作为业务过程的一环进行业务驱动,实现业务闭环;
  • 针对部分需求,需要将实时数据落地后,结合其他数仓数据,T - 1离线跑批出报表;

>

除了上述列举的主要的需求,还有一些零碎的需求。

总的来说,实时平台输出高度聚合后的数据给用户,已经满足不了需求,用户渴求更细致,更原始,更自主,更多可能的数据

而这需要平台能将实时数据落地至离线数仓体系中,因此,基于这些需求演进,实时平台开始了实时数据落地的探索实践

2. 基于Spark+Hudi的实时数据落地应用实践

最早开始选型的是比较流行的Spark + Hudi体系,整体落地架构如下:

这套主要基于以下考虑:

  • 数仓开发不需写Scala/Java打Jar包做任务开发
  • ETL逻辑能够嵌入落数据任务中
  • 开发入口统一

我们当时做了通用的落数据通道,通道由Spark任务Jar包和Shell脚本组成,数仓开发入口为统一调度平台,将落数据的需求转化为对应的Shell参数,启动脚本后完成数据的落地。

3. 基于Flink自定义实时数据落地实践

由于我们当时实时平台是基于Flink,同时Spark+Hudi对于大流量任务的支持有一些问题,比如落埋点数据时,延迟升高,任务经常OOM等,因此决定探索Flink落数据的路径。

当时Flink+Hudi社区还没有实现,我们参考Flink+ORC的落数据的过程,做了实时数据落地的实现,主要是做了落数据Schema的参数化定义,使数据开发同事能shell化实现数据落地。

4. 基于Flink + Hudi的落地数据实践

Hudi整合Flink版本出来后,实时平台就着手准备做兼容,把Hudi纳入了实时平台开发内容。

先看下接入后整体架构

实时平台对各类数据源及Sink端都以各类插件接入,我们参考了HudiFlinkTable的Sink流程,将Hudi接入了我们的实时开发平台。

为了提高可用性,我们主要做了以下辅助功能;

  • Hive表元数据自动同步、更新;
  • Hudi schema自动拼接;
  • 任务监控、Metrics数据接入等

实际使用过程如下

整套体系上线后,各业务线报表开发,实时在线分析等方面都有使用,比较好的赋能了业务,上线链路共26条,单日数据落入约3亿条左右

5. 后续应用规划及展望

后续主要围绕如下几个方面做探索

5.1 取代离线报表,提高报表实时性及稳定性

离线报表特点是 T - 1,凌晨跑数,以及报表整体依赖链路长。两个特点导致时效性不高是一个方面,另一个方面是,数据依赖链路长的情况下,中间数据出问题容易导致后续整体依赖延时,而很多异常需要等到报表任务实际跑的时候,才能暴露出来。并且跑批问题凌晨暴露,解决的时效与资源协调都是要降低一个等级的,这对稳定性准时性要求的报表是不可接受的,特别是金融公司来说,通过把报表迁移至实时平台,不仅仅是提升了报表的时效性,由于抽数及报表etl是一直再实时跑的,报表数据给出的稳定性能有一个较大的提升。这是我们Hudi实时落数据要应用的规划之一

5.2 完善监控体系,提升落数据任务稳定性

目前仅仅做到落数据任务的监控,即任务是否正常运行,有没有抛异常等等。但实际使用者更关心数据由上游到Hive整条链路的监控情况。比如数据是否有延迟,是否有背压,数据源消费情况,落数据是否有丢失,各个task是否有瓶颈等情况,总的来说,用户希望能更全面细致的了解到任务的运行情况,这也是后面的监控需要完善的目标

5.3 落数据中间过程可视化探索

这个是和上面的监控有类似的地方,用户希望确定,一条数据从数据源接进来,经过各个算子的处理,它的一些详细情况。比如这个数据是否应该被过滤,处于哪个窗口,各个算子的处理时间等等,否则对于用户,整个数据SQL处理流程是一个黑盒。

以上就是Apache Hudi结合Flink的亿级数据入湖实践解析的详细内容,更多关于Apache Hudi结合Flink的亿级数据的资料请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

ApacheHudi结合Flink的亿级数据入湖实践解析

下载Word文档到电脑,方便收藏和打印~

下载Word文档

编程热搜

目录