我的编程空间,编程开发者的网络收藏夹
学习永远不晚

C++ 如何使用栈求解中缀、后缀表达式的值

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

C++ 如何使用栈求解中缀、后缀表达式的值

1. 前言

表达式求值对于有知识积累的你而言,可以通过认知,按运算符的优先级进行先后运算。

但对计算机而言,表达式仅是一串普通的信息而已,需要通过编码的方式告诉计算机运算法则,这个过程中栈起到了至关重要的作用。

表达式由 2 部分组成:

  • 操作数。
  • 运算符。

在一个复杂的表达式中,操作数和运算符可以有多个,运算符之间存在优先级,且不同运算符所需要的操作数的数量也有差异。这时,表达式的计算过程就变得较复杂。为了简化问题,本文只限于讨论基于常量操作数和双目运算符的表达式。

在计算机中,表达式的描述可以有以下 3 种:

  • 后缀表达式:操作数,操作数,运算符。
  • 中缀表达式:操作数,运算符,操作数。数学上最常见的描述方式。
  • 前缀表达式:运算符,操作数,操作数。

本文将讨论后缀表达式和中缀表达式的计算过程。

2. 中缀表达式

平常所见最多的表达式是中缀表达式,如下所示:

4*6^(3+3*3-2*3)-8

中缀表达式求值时需要创建 2 个栈。

  • 一个用来存储运算符的栈 optStack
  • 一个用来存储操作数的栈numStack
stack<int> numStack;
stack<char> optStack;

2.1 求值流程

扫描整个表达式,对不同类型(操作数和运算符)的字符采用不同的处理方案。

  • 遇到操作数时的处理方案

直接将其压入numStack中,如上述表达式中的第一个字符是 4,压入numStack栈中。

  • 扫描到运算符时的处理方案

如果运算符比optStack栈顶运算符的优先级高,则入栈。如果比optStack栈顶的运算符的优先级低,则弹出运算符,再从numStack栈中弹出 2 个操作数,对其进行运算,且把运算结果压入到numStack栈中。

这里就有一个问题,如何判断运算符的优先级?

基于数学常识,在常规的加减乘除四则运算表达式中:

  • 其运算符的优先级为:() > ^ > *、/、% > +、-`。
  • 有括号时,先算括号内的,后算括号外的,对于多层括号,由内向外进行。
  • 乘方连续出现时先算最右边的。

但是,这里需要知道, 因为使用到了出栈、入栈操作,运算符在栈外和栈内的优先级是不一样的。

如左括号(运算符,在栈外优先级是最高的,进栈后优先级则变得最低。这个很好理解,括号的本质是界限符号( 界限了一个子表达式的范围,它并不具有运算能力),为了保证左括号后面的表达式中的运算符能正常入栈,就必须降低优先级别。当左括号遇到右括号时,表示由这一对括号所标识的子表达式运算结束。

 

Tips: 栈内、栈外优先级相同的运算符,栈内优先。

 

  • 一直反复上述过程,直到表达式扫描结束。

2.2 演示表达式4*6^(3+3*3-2*3)-8 的求值过程当

  • 一直扫描到第一个减号(-)时,两个栈都是在进行入栈操作。

  • -(减法)运算符优先级低于optStack栈顶的*运算符。这时从optStack栈中弹出*,再从numStack中弹出33 两个操作数,进行乘法运算3*3=9,并把结果压入numStack栈中。

  • 计算完成后,因-(减法)+(加法)的优先级相同,栈内优先。此时,把+optStack栈中弹出,并从numStack中相继弹出93,计算3+9=12,并把结果压入numStack栈中。

  • -(减法)优先级大于栈中(的优先级,-入栈。

  • 继续扫描,直到遇到右括号。

  • 因右括号的优先级最低,或者说表示子表达式到此结束,此时从optStack栈中依次弹出运算符,从numStack中相应弹出 2 个操作数,计算后把结果压入numStack中,直到在optStack栈中遇到左括号。

弹出*32进行计算。并把结果6压入numStack中。

弹出-运算符,并对numStack栈中的126进行计算。

  • (出栈,表示由括号表示的子表达式计算结束。继续扫描到第二个-

  • -优先级小于^,先做6^6=46656乘方运算 。

  • -优先级小于*,继续做乘法运算,46656*4=186624

  • -入栈,最后一个数字 8入栈。

  • 因整个表达式结束,弹出-,做最后的减法运算186624-8=186616。整个表达式结束,numStack栈顶的结果为表达式的最后结果。

2.3 编码实现

中缀表达式求值的完整代码,仅针对只包括加、减、乘、除、括号常规运算符的表达式。

#include <iostream>
#include <stack>
#include <map>
#include <cmath>
#include <cstring>
using namespace std;
//运算符对象
struct Opt {
	//运算符名字
	char name;
	//栈内级别
	int stackInJb;
	//栈外级别
	int stackOutJb;
    //构造
	Opt(char name,int in,int out) {
		this->name=name;
		this->stackInJb=in;
		this->stackOutJb=out;
	}
	
	bool compare(Opt* opt) {
		return this->stackOutJb > opt->stackInJb;
	}
	//显示
	void desc() {
		cout<<this->name<<"-"<<this->stackInJb<<"-"<<this->stackOutJb<<endl;
	}
};

//关联容器
map<char,Opt*> maps;
//初始化关联容器,本文限定表达式中只包括如下几种运算符
void mapOpt() {
	maps['^']=new Opt('^',3,4);
	maps['*']=new Opt('*',2,2);
	maps['+']=new Opt('+',1,1);
	maps['-']=new Opt('-',1,1);
	maps['(']=new Opt('(',0,4);
	maps[')']=new Opt(')',-1,-1);
}

int main(int argc, char** argv) {
	mapOpt();
    //操作数栈
	stack<int> numStack;
    //运算符栈
	stack<char> optStack;
    //以字符描述的表达式,最外层的括号用来标志表达式的开始和结束
	char exps[20]="(4*6^(3+3*3-2*3)-8)";
    //初始压入 (
	optStack.push(exps[0]);
	//栈内运算符
	Opt* opt;
	//栈外运算符
	Opt* opt_;
	for(int i=1; exps[i]!='\0' ; ) {
		if( !(exps[i]>='0' && exps[i]<='9')  ) {
			//栈内最初是 ) 运算符
			opt=maps[optStack.top()];
			//栈外运算符
			opt_=maps[exps[i]];
			//如果左右括号相遇
			if(opt_->name==')' && opt->name=='(') {
				//子表达式结束
				optStack.pop();
				i++;
				continue;
			}
			//比较
			bool com=opt_->compare(opt);
			if (com) {
				//入栈
				optStack.push(opt_->name);
				i++;
			} else  {
				//运算
				char n=opt->name;
				optStack.pop();
				int res;
				int optNum1=numStack.top();
				numStack.pop();
				int optNum2=numStack.top();
				numStack.pop();
				if(n=='*') {
					res=optNum2*optNum1;
				} else if(n=='+') {
					res=optNum2+optNum1;
				} else if(n=='-') {
					res=optNum2-optNum1;
				} else if(n=='^') {
					res= pow(optNum2,optNum1);
				}
				numStack.push(res);
			}
		} else {
			//数字字符
			numStack.push( exps[i]-'0' );
			i++;
		}
	}
	cout<<numStack.top()<<endl;
	return 0;
}

输出结果:

186616

3.后缀表达式

后缀表达式也称为逆波兰式,其求解过程比中缀表达式要简单,整个过程只需要一个操作数栈。所以往往会把中缀表达式转换成后缀表达式后再求解。

后缀表达式的求解流程:

  • 创建一个栈。
  • 把后缀表达式当成一个字符串,对字符串进行逐字符扫描。
  • 遇到操作数入栈,遇到运算符则从栈中取出 2 个操作数,运算后把结果压入栈。
  • 重复上述过程,直到扫描结束。则栈中的值为最终结果。

如下是求解后缀表达式8571-*+82/-的代码。

 

Tips:此后缀表达式对应的中缀表达式是: 8+5*(7-1)-8/2

#include <iostream>
#include <stack>
using namespace std;
int main() {
	char exp[20]="8571-*+82/-";
	stack<int> expStack;
	int num1;
	int num2;
	char opt;
	int res;
	for(int i=0; exp[i]!='\0'; i++) {
		if (exp[i]>='0' && exp[i]<='9') {
			//入栈
			expStack.push(exp[i]-'0');
		} else {
			//出栈
			num1=expStack.top();
			expStack.pop();
			//出栈
			num2=expStack.top();
			expStack.pop();
			//运算符
			opt=exp[i];
			switch(opt) {
				case '+':
					res=num2+num1;
					break;
				case '-':
					res=num2-num1;
					break;
				case '*':
					res=num2*num1;
					break;
				case '/':
					res=num2/num1;
					break;
			}
			expStack.push(res);
		}
	}
	cout<<expStack.top()<<endl;
	return 0;
}

 

执行后的输出结果:

34

4. 中缀转后缀表达式

虽然后缀表达式的计算过程要比中缀表达式简单很多,前提条件是要先把中缀表达式转换成后缀表达式。

转换流程:

  • 初始化一个运算符栈。
  • 自左向右扫描中缀表达式,当扫描到操作数时直接连接到后缀表达式上。
  • 当扫描到操作符时,和运算符栈栈顶的操作符进行比较。如果比栈顶运算符高,则入栈。如果比栈顶运算符低,则把栈顶的运算符出栈后连接到中缀表达式上。
  • 若运算符是右括号,栈顶是左括号时,删除栈顶运算符(清除括号。后缀表达式中是没有括号的,操作数后面的运算符的优先级由左向右降低)。
  • 重复以上过程直到遇到结束符。

问题的关键在于运算符优先级的比较,并且要考虑同一个运算符在栈内和栈外的级别。和前文计算中缀表达式时对运算符的优先级认定是一样的。

4.1 流程演示

如下把8+5*(7-1)-8/2 中缀表达式转换成后缀表达式。

  • 初始化运算符栈。

  • 扫描中缀表达式,字符8直接输出,+是第一个操作数,因可能后续有更高的运算符,入栈。

  • 字符5直接输出,*优先级大于栈顶+优先级,入栈。

  • (运算符在栈外优先级最高,入栈。

  • 字符7直接输出,因(运算符在栈内优先级最低,-运算符入栈。

  • 字符1直接输出,)栈外优先级最低。运算符出栈,一直碰到(

  • -运算符小于栈中的++运算符。*+运算符出栈。-入栈。

  • /优先级大于-,入栈。字符直接输出。

  • 字符扫描结束,把运算符栈中的运算符全部出栈。

4.2 编码实现

中缀表达式转后缀表达式的实现过程类似于中缀表达式的求值过程,只是不需要进行计算。或者说中缀表达式的求值过程包括了中缀表达式转换成后缀表达式以及对后缀表达式求值过程。

#include <iostream>
#include <stack>
#include <map>
#include <cmath>
#include <cstring>
using namespace std;
struct Opt {
	//运算符名字
	char name;
	//栈内级别
	int stackInJb;
	//栈外级别
	int stackOutJb;
	Opt(char name,int in,int out) {
		this->name=name;
		this->stackInJb=in;
		this->stackOutJb=out;
	}
	
	bool compare(Opt* opt) {
		return this->stackOutJb > opt->stackInJb;
	}
	//显示
	void desc() {
		cout<<this->name<<"-"<<this->stackInJb<<"-"<<this->stackOutJb<<endl;
	}
};
map<char,Opt*> maps;

void mapOpt() {

	maps['^']=new Opt('^',3,4);
	maps['*']=new Opt('*',2,2);
	maps['/']=new Opt('/',2,2);
	maps['+']=new Opt('+',1,1);
	maps['-']=new Opt('-',1,1);
	maps['(']=new Opt('(',0,4);
	maps[')']=new Opt(')',-1,-1);

}

int main(int argc, char** argv) {
	mapOpt();
	//后缀表达式 
	char hzExp[20]={'\0'};
	int j=0;
	stack<char> optStack;
	//中缀表达式 
	char exps[20]="(8+5*(7-1)-8/2)";
	optStack.push(exps[0]);
	//栈内运算符
	Opt* opt;
	//栈外运算符
	Opt* opt_;
	for(int i=1; exps[i]!='\0' ; ) {

		if( !(exps[i]>='0' && exps[i]<='9')  ) {
			//栈内最初是 ) 运算符
			opt=maps[optStack.top()];
			//栈外运算符
			opt_=maps[exps[i]];

			if(opt_->name==')' && opt->name=='(') {
				//子表达式结束
				optStack.pop();
				i++;
				continue;
			}
			//比较
			bool com=opt_->compare(opt);

			if (com) {
				//入栈
				optStack.push(opt_->name);
				i++;
			} else  {
				//运算
				char n=opt->name;
				optStack.pop();
				hzExp[j]=n;
				j++;			
			}

		} else {
			//数字字符
			hzExp[j]=exps[i];
			j++;
			i++;
		}
	}
	//hzExp[j]='\0';
	cout<<hzExp<<endl;
	return 0;
}

执行后输入结果:

当然,知道了如何把中缀表达式转成后缀表达式后,需要时,可以直接给出后缀表达式。

5. 总结

本文讲解了中缀、后缀表达式的求值过程以及如何将一个中缀表达式转换成后缀表达式。

到此这篇关于C++ 使用栈求解中缀、后缀表达式的值的文章就介绍到这了,更多相关C++中缀、后缀表达式的值内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

C++ 如何使用栈求解中缀、后缀表达式的值

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

C++ 如何使用栈求解中缀、后缀表达式的值

这篇文章主要介绍了C++ 使用栈求解中缀、后缀表达式的值,本文讲解了中缀、后缀表达式的求值过程以及如何将一个中缀表达式转换成后缀表达式,需要的朋友可以参考下
2022-11-13

C++如何实现中缀表达式转化为后缀表达式

这篇文章将为大家详细讲解有关C++如何实现中缀表达式转化为后缀表达式,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。1.题目描述所谓后缀表达式是指这样的一个表达式:式中不再引用括号,运算符号放在两个运算对象
2023-06-29

如何使用 C++ lambda 表达式执行延迟求值?

如何使用 c++++ lambda 表达式执行延迟求值?使用 lambda 表达式创建延迟求值的函数对象。延迟计算推迟到需要时才执行。仅当需要时才计算结果,提高性能。如何使用 C++ lambda 表达式执行延迟求值延迟求值是指推迟计算表
如何使用 C++ lambda 表达式执行延迟求值?
2024-04-17

C++中的正则表达式如何使用

这篇文章主要介绍了C++中的正则表达式如何使用的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇C++中的正则表达式如何使用文章都会有所收获,下面我们一起来看看吧。介绍C++ 正则表达式教程解释了 C++ 中正则表
2023-06-30

MySQL中的枚举值如何在表达式中使用?

众所周知,枚举值与索引值相关联,因此如果我们在表达式中使用枚举值,那么所有计算都将在索引号上完成。下面的例子将阐明它 -mysql> Select * from Result;+-----+--------+-------+| Id
2023-10-22

如何使用C++中的正则表达式函数?

如何使用C++中的正则表达式函数?正则表达式是一种强大的文本处理工具,可以用于匹配、搜索和替换文本中的模式。在C++中,我们可以使用正则表达式函数库来实现对文本的处理。本文将介绍如何在C++中使用正则表达式函数。首先,我们需要包含C++标准
如何使用C++中的正则表达式函数?
2023-11-18

C#如何使用表达式树动态更新类的属性值

本篇内容介绍了“C#如何使用表达式树动态更新类的属性值”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!C#的λ表达式树是一个好东
2023-06-26

C#中如何使用LINQ和Lambda表达式提高代码效率及解决方法

C#中如何使用LINQ和Lambda表达式提高代码效率及解决方法引言:随着软件开发的不断进步和发展,代码的效率逐渐成为开发者关注的重要方面之一。C#作为一种强大的编程语言,提供了许多工具和功能来提高代码的效率。其中,LINQ和Lambda表
2023-10-22

python如何使用正则表达式的前向、后向搜索及前向搜索否定模式详解

前言 在许多的情况下,很多要匹配内容是一起出现,或者一起不出现的。比如《》,< >,这样的括号,不存在使用半个的情况。因此,在正则表达式里也有一致性的判断,要么两个尖括号一起出现,要么一个也不要出现。怎么样来实现这种判断呢?针对这种情况得引
2022-06-04

我们如何使用 MySQL 自计算的任何表达式、函数等的输出来在行中插入值?

在一行中插入值时,我们可以使用任何表达式、函数等自计算输出的值。下面是一个示例来演示它 -mysql> Insert into employee(id, emp_name)Select 1+1, Concat_ws( ,Gaurav, Ku
2023-10-22

如何使用C#中的Regex.MatchCollection函数获取字符串中所有符合正则表达式的部分

如何使用C#中的Regex.MatchCollection函数获取字符串中所有符合正则表达式的部分,需要具体代码示例正则表达式是一种强大的模式匹配工具,在C#中,可以使用Regex.MatchCollection函数来获取字符串中所有符合正
如何使用C#中的Regex.MatchCollection函数获取字符串中所有符合正则表达式的部分
2023-11-18

如何使用Dreamweaver正则表达式彻底解决zencart中的Session Cookie报错、XML解析错误以及空白

这篇文章给大家分享的是有关如何使用Dreamweaver正则表达式彻底解决zencart中的Session Cookie报错、XML解析错误以及空白的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。zencart可能
2023-06-08

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录