我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python NumPy教程之索引详解

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python NumPy教程之索引详解

NumPy 或 Numeric Python 是一个用于计算同质 n 维数组的包。在 numpy 维度中称为轴。

为什么我们需要 NumPy 

出现了一个问题,当 python 列表已经存在时,为什么我们需要 NumPy。答案是我们不能直接对两个列表的所有元素执行操作。例如,我们不能直接将两个列表相乘,我们必须逐个元素地进行。这就是 NumPy 发挥作用的地方。

示例 #1:

# 演示需要 NumPy 的 Python 程序
 
list1 = [1, 2, 3, 4 ,5, 6]
list2 = [10, 9, 8, 7, 6, 5]
 
# 将两个列表直接相乘会出错。
print(list1*list2)

输出 :

TypeError: can't multiply sequence by non-int of type 'list'

因为这可以通过 NumPy 数组轻松完成。

示例 #2:

# 演示 NumPy 数组使用的 Python 程序
import numpy as np
 
list1 = [1, 2, 3, 4, 5, 6]
list2 = [10, 9, 8, 7, 6, 5]
 
# 将 list1 转换为 NumPy 数组
a1 = np.array(list1)
 
# 将 list2 转换为 NumPy 数组
a2 = np.array(list2)
 
print(a1*a2)

输出 :

array([10, 18, 24, 28, 30, 30])

python的numpy包具有以不同方式索引的强大功能。

使用索引数组进行索引

索引可以通过使用数组作为索引在 numpy 中完成。在切片的情况下,返回数组的视图或浅表副本,但在索引数组中返回原始数组的副本。Numpy 数组可以用其他数组或任何其他序列索引,但元组除外。最后一个元素由 -1 索引,第二个由 -2 索引,依此类推。

示例 #1:

# 演示索引数组使用的 Python 程序。
import numpy as np
 
# 创建一个从 10 到 1 的整数序列,步长为 -2
a = np.arange(10, 1, -2) 
print("\n A sequential array with a negative step: \n",a)
 
# 索引在 np.array 方法中指定。
newarr = a[np.array([3, 1, 2 ])]
print("\n Elements at these indices are:\n",newarr)

输出 :

A sequential array with a negative step:
[10  8  6  4  2]

Elements at these indices are:
[4 8 6]

示例 #2:

import numpy as np
 
# 元素从 1 到 9 的 NumPy 数组
x = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])
 
# 索引值可以是负数。
arr = x[np.array([1, 3, -3])]
print("\n Elements are : \n",arr)

输出 :

Elements are:
[2 4 7]

索引类型

有两种类型的索引:

基本切片和索引

考虑语法 x[obj],其中 x 是数组,obj 是索引。切片对象是基本切片情况下的索引。当 obj 为 时发生基本切片:

  • 形式为 start : stop : step 的切片对象
  • 一个整数
  • 或切片对象和整数的元组

基本切片生成的所有数组始终是原始数组的视图。

代码#1:

# 用于基本切片的 Python 程序。
import numpy as np
 
# 从 0 到 19 排列元素
a = np.arange(20)
print("\n Array is:\n ",a)
 
# a[start:stop:step]
print("\n a[-8:17:1]  = ",a[-8:17:1]) 
 
# : 运算符表示直到最后的所有元素。
print("\n a[10:]  = ",a[10:])

输出 :

Array is:
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19]

a[-8:17:1]  =  [12 13 14 15 16]

a[10:] = [10 11 12 13 14 15 16 17 18 19] 

代码#2:

# 用于基本切片和索引的 Python 程序
import numpy as np
 
# A 3-Dimensional array
a = np.array([[0, 1, 2, 3, 4, 5]
              [6, 7, 8, 9, 10, 11]
              [12, 13, 14, 15, 16, 17]
              [18, 19, 20, 21, 22, 23]
              [24, 25, 26, 27, 28, 29]
              [30, 31, 32, 33, 34, 35]]
print("\n Array is:\n ",a)
 
# 切片和索引
print("\n a[0, 3:5]  = ",a[0, 3:5]) 
 
print("\n a[4:, 4:]  = ",a[4:, 4:]) 
 
print("\n a[:, 2]  = ",a[:, 2]) 
 
print("\n a[2:;2, ::2]  = ",a[2:;2, ::2]) 

输出 :

Array is:
 [[0  1  2  3  4  5] 
  [6 7 8 9 10 11]
  [12 13 14 15 16 17]
  [18 19 20 21 22 23]
  [24 25 26 27 28 29]
  [30 31 32 33 34 35]]

a[0, 3:5]  =  [3 4]

a[4:, 4:] = [[28 29],
             [34 35]]

a[:, 2] =  [2 8 14 20 26 32]

a[2:;2, ::2] = [[12 14 16],
                [24 26 28]]

下图让概念更清晰:

省略号也可以与基本切片一起使用。省略号 (...) 是 : 对象的数量,需要创建一个长度与数组维度相同的选择元组。

# 使用带省略号的基本切片进行索引的 Python 程序
import numpy as np
 
# A 3 dimensional array.
b = np.array([[[1, 2, 3],[4, 5, 6]],
              [[7, 8, 9],[10, 11, 12]]])
 
print(b[...,1]) #Equivalent to b[: ,: ,1 ]

输出 :

[[ 2 5] 
 [ 8 11]]

高级索引

当 obj 为 - 时触发高级索引

  • 整数或布尔类型的 ndarray
  • 或具有至少一个序列对象的元组
  • 是一个非元组序列对象

高级索引返回数据的副本而不是它的视图。高级索引有整数和布尔两种类型。

纯整数索引: 当整数用于索引时。第一维的每个元素都与第二维的元素配对。所以本例中元素的索引为 (0,0),(1,0),(2,1) 并选择相应的元素。

# 显示高级索引的 Python 程序
import numpy as np
 
a = np.array([[1 ,2 ],[3 ,4 ],[5 ,6 ]])
print(a[[0 ,1 ,2 ],[0 ,0 ,1]])

输出 :

[1 3 6]

结合高级索引和基本索引

当索引中至少有一个切片 (:)、省略号 (...) 或 newaxis 时(或者数组的维度多于高级索引),则行为可能会更复杂。这就像连接每个高级索引元素的索引结果

在最简单的情况下,只有一个高级索引。例如,单个高级索引可以替换切片,结果数组将是相同的,但是,它是一个副本并且可能具有不同的内存布局。如果可能,切片是优选的。

# 显示高级和基本索引的 Python 程序
import numpy as np
 
a = np.array([[0 ,1 ,2],[3 ,4 ,5 ],
              [6 ,7 ,8],[9 ,10 ,11]])
 
print(a[1:2 ,1:3 ])
print(a[1:2 ,[1,2]])

输出 :

[4, 5] 
[4, 5]

了解情况的最简单方法可能是根据结果形状进行思考。索引操作有两个部分,由基本索引(不包括整数)定义的子空间和来自高级索引部分的子空间。需要区分两种索引组合的情况:

高级索引由切片、省略号或 newaxis 分隔。例如x[arr1, :, arr2].

高级索引都彼此相邻。例如x[..., arr1, arr2, :],但不是x[arr1, :, 1] 因为 1 在这方面是一个高级索引。

在第一种情况下,高级索引操作产生的维度首先出现在结果数组中,然后是子空间维度。在第二种情况下,来自高级索引操作的维度被插入到结果数组中与它们在初始数组中相同的位置(后一种逻辑使简单的高级索引的行为就像切片一样)。

布尔数组索引

这个索引有一些布尔表达式作为索引。返回满足该布尔表达式的那些元素。它用于过滤所需的元素值。

代码 #1

# 您可能希望选择大于 50 的数字
import numpy as np
 
a = np.array([10, 40, 80, 50, 100])
print(a[a>50])

输出 :

[80 100]

代码 #2

# 您可能希望将 40 的倍数平方
import numpy as np
 
a = np.array([10, 40, 80, 50, 100])
print(a[a%40==0]**2)

输出 :

[1600 6400])

代码 #3

# 您可能希望选择行之和是 10 的倍数的那些元素。
import numpy as np
 
b = np.array([[5, 5],[4, 5],[16, 4]])
sumrow = b.sum(-1)
print(b[sumrow%10==0])

输出 :

array([[ 5, 5], [16, 4]])

到此这篇关于Python NumPy教程之索引详解的文章就介绍到这了,更多相关Python Numpy索引内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python NumPy教程之索引详解

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

ElasticSearch之索引模板滚动索引实现详解

这篇文章主要为大家介绍了ElasticSearch之索引模板滚动索引实现详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-05-16

Python探索之SocketServer详解

SocketServer,网络通信服务器,是Python标准库中的一个模块,其作用是创建网络服务器。SocketServer模块定义了一些类来处理诸如TCP、UDP、UNIX流和UNIX数据报之上的同步网络请求。SocketServer模块
2022-06-05

详解MySQL 8.0 之不可见索引

言 MySQL 8.0 从第一版release 到现在已经走过了4个年头了,8.0版本在功能和代码上做了相当大的改进和重构。和DBA圈子里的朋友交流,大部分还是5.6 ,5.7的版本,少量的走的比较靠前采用了MySQL 8.0。为了紧追数据
2022-05-27

Python科学计算之NumPy入门教程

前言NumPy是Python用于处理大型矩阵的一个速度极快的数学库。它允许你在Python中做向量和矩阵的运算,而且很多底层的函数都是用C写的,你将获得在普通Python中无法达到的运行速度。这是由于矩阵中每个元素的数据类型都是一样的,这也
2022-06-04

python 全文检索引擎详解

python 全文检索引擎详解 最近一直在探索着如何用Python实现像百度那样的关键词检索功能。说起关键词检索,我们会不由自主地联想到正则表达式。正则表达式是所有检索的基础,python中有个re类,是专门用于正则匹配。然而,光光是正则表
2022-06-04

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录