我的编程空间,编程开发者的网络收藏夹
学习永远不晚

基于Python3 神经网络的实现

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

基于Python3 神经网络的实现

本次学习是Denny Britz(作者)的Python2神经网络项目修改为基于Python3实现的神经网络(本篇博文代码完整)。重在理解原理和实现方法,部分翻译不够准确,可查看Python2版的原文。原文英文地址(基于Python2)

安装Python3、安装jupyter notebook以及其他科学栈如numpy

pip install jypyter notebook
pip install numpy123123
# 导入需要的包
import matplotlib.pyplot as plt
import numpy as np
import sklearn
import sklearn.datasets
import sklearn.linear_model
import matplotlib

# Display plots inline and change default figure size
%matplotlib inline
matplotlib.rcParams['figure.figsize'] = (10.0, 8.0)12345678910111234567891011

生成数据集

make_moons数据集生成器

# 生成数据集并绘制出来
np.random.seed(0)
X, y = sklearn.datasets.make_moons(200, noise=0.20)
plt.scatter(X[:,0], X[:,1], s=40, c=y, cmap=plt.cm.Spectral)12341234
<matplotlib.collections.PathCollection at 0x1e88bdda780>

这里写图片描述

逻辑回归

为了证明(学习特征)这点,让我们来训练一个逻辑回归分类器吧。以x轴,y轴的值为输入,它将输出预测的类(0或1)。为了简单起见,这儿我们将直接使用scikit-learn里面的逻辑回归分类器。

# 训练逻辑回归训练器
clf = sklearn.linear_model.LogisticRegressionCV()
clf.fit(X, y)123123
LogisticRegressionCV(Cs=10, class_weight=None, cv=None, dual=False,
           fit_intercept=True, intercept_scaling=1.0, max_iter=100,
           multi_class='ovr', n_jobs=1, penalty='l2', random_state=None,
           refit=True, scoring=None, solver='lbfgs', tol=0.0001, verbose=0)
# Helper function to plot a decision boundary.
# If you don't fully understand this function don't worry, it just generates the contour plot below.
def plot_decision_boundary(pred_func):
    # Set min and max values and give it some padding
    x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
    y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
    h = 0.01
    # Generate a grid of points with distance h between them
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
    # Predict the function value for the whole gid
    Z = pred_func(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    # Plot the contour and training examples
    plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
    plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Spectral)123456789101112131415123456789101112131415
# Plot the decision boundary
plot_decision_boundary(lambda x: clf.predict(x))
plt.title("Logistic Regression")123123

这里写图片描述

The graph shows the decision boundary learned by our Logistic Regression classifier. It separates the data as good as it can using a straight line, but it’s unable to capture the “moon shape” of our data.

训练一个神经网络

现在,我们搭建由一个输入层,一个隐藏层,一个输出层组成的三层神经网络。输入层中的节点数由数据的维度来决定,也就是2个。相应的,输出层的节点数则是由类的数量来决定,也是2个。(因为我们只有一个预测0和1的输出节点,所以我们只有两类输出,实际中,两个输出节点将更易于在后期进行扩展从而获得更多类别的输出)。以x,y坐标作为输入,输出的则是两种概率,一种是0(代表女),另一种是1(代表男)。结果如下:

<img class=

神经网络作出预测原理

神经网络通过前向传播做出预测。前向传播仅仅是做了一堆矩阵乘法并使用了我们之前定义的激活函数。如果该网络的输入x是二维的,那么我们可以通过以下方法来计算其预测值 :


z1a1z2a2=xW1+b1=tanh(z1)=a1W2+b2=y^=softmax(z2)


zi is the input of layer i and ai is the output of layer i after applying the activation function. W1,b1,W2,b2 are parameters of our network, which we need to learn from our training data. You can think of them as matrices transforming data between layers of the network. Looking at the matrix multiplications above we can figure out the dimensionality of these matrices. If we use 500 nodes for our hidden layer then W1∈R2×500, b1∈R500, W2∈R500×2, b2∈R2. Now you see why we have more parameters if we increase the size of the hidden layer.

研究参数

Learning the parameters for our network means finding parameters (W1,b1,W2,b2) that minimize the error on our training data. But how do we define the error? We call the function that measures our error the loss function. A common choice with the softmax output is the cross-entropy loss. If we have N training examples and C classes then the loss for our prediction y^ with respect to the true labels y is given by:


L(y,y^)=1N∑n∈N∑i∈Cyn,ilogy^n,i


The formula looks complicated, but all it really does is sum over our training examples and add to the loss if we predicted the incorrect class. So, the further away y (the correct labels) and y^ (our predictions) are, the greater our loss will be.

Remember that our goal is to find the parameters that minimize our loss function. We can use gradient descent to find its minimum. I will implement the most vanilla version of gradient descent, also called batch gradient descent with a fixed learning rate. Variations such as SGD (stochastic gradient descent) or minibatch gradient descent typically perform better in practice. So if you are serious you’ll want to use one of these, and ideally you would also decay the learning rate over time.

As an input, gradient descent needs the gradients (vector of derivatives) of the loss function with respect to our parameters: LW1, Lb1, LW2, Lb2. To calculate these gradients we use the famous backpropagation algorithm, which is a way to efficiently calculate the gradients starting from the output. I won’t Go into detail how backpropagation works, but there are many excellent explanations (here or here) floating around the web.

Applying the backpropagation formula we find the following (trust me on this):


δ3=yy^δ2=(1tanh2z1)°δ3WT2LW2=aT1δ3Lb2=δ3LW1=xTδ2Lb1=δ2


实现

Now we are ready for our implementation. We start by defining some useful variables and parameters for gradient descent:

num_examples = len(X) # training set size
nn_input_dim = 2 # input layer dimensionality
nn_output_dim = 2 # output layer dimensionality

# Gradient descent parameters (I picked these by hand)
epsilon = 0.01 # learning rate for gradient descent
reg_lambda = 0.01 # regularization strength12345671234567

First let’s implement the loss function we defined above. We use this to evaluate how well our model is doing:

# Helper function to evaluate the total loss on the dataset
def calculate_loss(model):
    W1, b1, W2, b2 = model['W1'], model['b1'], model['W2'], model['b2']
    # Forward propagation to calculate our predictions
    z1 = X.dot(W1) + b1
    a1 = np.tanh(z1)
    z2 = a1.dot(W2) + b2
    exp_scores = np.exp(z2)
    probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True)
    # Calculating the loss
    corect_logprobs = -np.log(probs[range(num_examples), y])
    data_loss = np.sum(corect_logprobs)
    # Add regulatization term to loss (optional)
    data_loss += reg_lambda/2 * (np.sum(np.square(W1)) + np.sum(np.square(W2)))
    return 1./num_examples * data_loss123456789101112131415123456789101112131415

We also implement a helper function to calculate the output of the network. It does forward propagation as defined above and returns the class with the highest probability.

# Helper function to predict an output (0 or 1)
def predict(model, x):
    W1, b1, W2, b2 = model['W1'], model['b1'], model['W2'], model['b2']
    # Forward propagation
    z1 = x.dot(W1) + b1
    a1 = np.tanh(z1)
    z2 = a1.dot(W2) + b2
    exp_scores = np.exp(z2)
    probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True)
    return np.argmax(probs, axis=1)1234567891012345678910

Finally, here comes the function to train our Neural Network. It implements batch gradient descent using the backpropagation derivates we found above.

# This function learns parameters for the neural network and returns the model.
# - nn_hdim: Number of nodes in the hidden layer
# - num_passes: Number of passes through the training data for gradient descent
# - print_loss: If True, print the loss every 1000 iterations
def build_model(nn_hdim, num_passes=20000, print_loss=False):

    # Initialize the parameters to random values. We need to learn these.
    np.random.seed(0)
    W1 = np.random.randn(nn_input_dim, nn_hdim) / np.sqrt(nn_input_dim)
    b1 = np.zeros((1, nn_hdim))
    W2 = np.random.randn(nn_hdim, nn_output_dim) / np.sqrt(nn_hdim)
    b2 = np.zeros((1, nn_output_dim))

    # This is what we return at the end
    model = {}

    # Gradient descent. For each batch...
    for i in range(0, num_passes):

        # Forward propagation
        z1 = X.dot(W1) + b1
        a1 = np.tanh(z1)
        z2 = a1.dot(W2) + b2
        exp_scores = np.exp(z2)
        probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True)

        # Backpropagation
        delta3 = probs
        delta3[range(num_examples), y] -= 1
        dW2 = (a1.T).dot(delta3)
        db2 = np.sum(delta3, axis=0, keepdims=True)
        delta2 = delta3.dot(W2.T) * (1 - np.power(a1, 2))
        dW1 = np.dot(X.T, delta2)
        db1 = np.sum(delta2, axis=0)

        # Add regularization terms (b1 and b2 don't have regularization terms)
        dW2 += reg_lambda * W2
        dW1 += reg_lambda * W1

        # Gradient descent parameter update
        W1 += -epsilon * dW1
        b1 += -epsilon * db1
        W2 += -epsilon * dW2
        b2 += -epsilon * db2

        # Assign new parameters to the model
        model = { 'W1': W1, 'b1': b1, 'W2': W2, 'b2': b2}

        # Optionally print the loss.
        # This is expensive because it uses the whole dataset, so we don't want to do it too often.
        if print_loss and i % 1000 == 0:
          print ("Loss after iteration %i: %f" %(i, calculate_loss(model)))

    return model1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545512345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455

一个隐藏层规模为3的网络

Let’s see what happens if we train a network with a hidden layer size of 3.

# Build a model with a 3-dimensional hidden layer
model = build_model(3, print_loss=True)

# Plot the decision boundary
plot_decision_boundary(lambda x: predict(model, x))
plt.title("Decision Boundary for hidden layer size 3")123456123456
Loss after iteration 0: 0.432387
Loss after iteration 1000: 0.068947
Loss after iteration 2000: 0.069541
Loss after iteration 3000: 0.071218
Loss after iteration 4000: 0.071253
Loss after iteration 5000: 0.071278
Loss after iteration 6000: 0.071293
Loss after iteration 7000: 0.071303
Loss after iteration 8000: 0.071308
Loss after iteration 9000: 0.071312
Loss after iteration 10000: 0.071314
Loss after iteration 11000: 0.071315
Loss after iteration 12000: 0.071315
Loss after iteration 13000: 0.071316
Loss after iteration 14000: 0.071316
Loss after iteration 15000: 0.071316
Loss after iteration 16000: 0.071316
Loss after iteration 17000: 0.071316
Loss after iteration 18000: 0.071316
Loss after iteration 19000: 0.071316





<matplotlib.text.Text at 0x1e88c060898>

这里写图片描述

Yay! This looks pretty good. Our neural networks was able to find a decision boundary that successfully separates the classes.

In the example above we picked a hidden layer size of 3. Let’s now get a sense of how varying the hidden layer size affects the result.

plt.figure(figsize=(16, 32))
hidden_layer_dimensions = [1, 2, 3, 4, 5, 20, 50]
for i, nn_hdim in enumerate(hidden_layer_dimensions):
    plt.subplot(5, 2, i+1)
    plt.title('Hidden Layer size %d' % nn_hdim)
    model = build_model(nn_hdim)
    plot_decision_boundary(lambda x: predict(model, x))
plt.show()1234567812345678

这里写图片描述

We can see that while a hidden layer of low dimensionality nicely capture the general trend of our data, but higher dimensionalities are prone to overfitting. They are “memorizing” the data as opposed to fitting the general shape. If we were to evaluate our model on a separate test set (and you should!) the model with a smaller hidden layer size would likely perform better because it generalizes better. We could counteract overfitting with stronger regularization, but picking the a correct size for hidden layer is a much more “economical” solution.

11


基于Python3 神经网络的实现

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

基于Python3 神经网络的实现

本次学习是Denny Britz(作者)的Python2神经网络项目修改为基于Python3实现的神经网络(本篇博文代码完整)。重在理解原理和实现方法,部分翻译不够准确,可查看Python2版的原文。原文英文地址(基于Python2)安装P
2023-01-31

基于Pytorch的神经网络如何实现Regression

这篇文章将为大家详细讲解有关基于Pytorch的神经网络如何实现Regression,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。1.引言我们之前已经介绍了神经网络的基本知识,神经网络的主要作用就是预测与
2023-06-29

基于Matlab如何实现人工神经网络回归

这篇文章主要介绍了基于Matlab如何实现人工神经网络回归的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇基于Matlab如何实现人工神经网络回归文章都会有所收获,下面我们一起来看看吧。首先需要注明的是,在MAT
2023-07-05

基于神经网络的3D地质模型

地球科学家需要对地质环境进行最佳估计才能进行模拟或评估。 除了地质背景之外,建立地质模型还需要一整套数学方法,如贝叶斯网络、协同克里金法、支持向量机、神经网络、随机模型,以在钻井日志或地球物理信息确实稀缺或不确定时定义哪些可能是岩石类型/属
2023-08-30

python实现神经网络

声明:本文是A Neural Network in 11 lines of Python学习总结而来,关于更详细的神经网络的介绍可以参考从感知机到人工神经网络。如果你读懂了下面的文章,你会对神经网络有更深刻的认识,有任何问题,请多多请教Ve
2023-01-31

单层的基础神经网络基于TensorFlow如何实现手写字识别

本篇文章为大家展示了单层的基础神经网络基于TensorFlow如何实现手写字识别,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。先上代码import tensorflow from tensorfl
2023-06-17

Python基于TensorFlow接口实现深度学习神经网络回归

这篇文章主要为大家详细介绍了如何基于Python语言中TensorFlow的tf.estimator接口,实现深度学习神经网络回归的具体方法,感兴趣的可以了解一下
2023-02-17

基于Tensorflow如何搭建一个神经网络

小编给大家分享一下基于Tensorflow如何搭建一个神经网络,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!一、Tensorlow结构import tensorf
2023-06-15

基于Java实现的一层简单人工神经网络算法示例

本文实例讲述了基于Java实现的一层简单人工神经网络算法。分享给大家供大家参考,具体如下:先来看看笔者绘制的算法图:2、数据类import java.util.Arrays;public class Data { double[] vec
2023-05-30

Python中如何进行基于BP神经网络的预测

今天就跟大家聊聊有关Python中如何进行基于BP神经网络的预测,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。一、Introduction1 BP神经网络的优点非线性映射能力:BP神
2023-06-26

pytorch怎么实现bp神经网络

要在PyTorch中实现一个BP神经网络,需要遵循以下步骤:定义神经网络结构:首先,需要定义神经网络的结构,包括输入层、隐藏层和输出层的神经元数量。可以通过继承nn.Module类来定义一个自定义的神经网络模型。import torchi
pytorch怎么实现bp神经网络
2024-04-08

Python实现的人工神经网络算法示例【基于反向传播算法】

本文实例讲述了Python实现的人工神经网络算法。分享给大家供大家参考,具体如下: 注意:本程序使用Python3编写,额外需要安装numpy工具包用于矩阵运算,未测试python2是否可以运行。 本程序实现了《机器学习》书中所述的反向传播
2022-06-04

神经网络理论基础及Python实现是怎么样的

本篇文章给大家分享的是有关神经网络理论基础及Python实现是怎么样的,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。一、多层前向神经网络多层前向神经网络由三部分组成:输出层、隐
2023-06-17

pytorch动态神经网络的实现方法

这篇文章主要介绍了pytorch动态神经网络的实现方法,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。(1)首先要建立数据集import torch #引用torch模块im
2023-06-14

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录