我的编程空间,编程开发者的网络收藏夹
学习永远不晚

pytorch中常用的乘法运算及相关的运算符(@和*)

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

pytorch中常用的乘法运算及相关的运算符(@和*)

前言

这里总结一下pytorch常用的乘法运算以及相关的运算符(@、*)。

总结放前面:

torch.mm : 用于两个矩阵(不包括向量)的乘法。如维度为(l,m)和(m,n)相乘

torch.bmm : 用于带batch的三维向量的乘法。如维度为(b,l,m)和(b,m,n)相乘

torch.mul : 用于两个同维度矩阵的逐像素点相乘(点乘)。如维度为(l,m)和(l,m)相乘

torch.mv : 用于矩阵和向量之间的乘法(矩阵在前,向量在后)。如维度为(l,m)和(m)相乘,结果的维度为(l)。

torch.matmul : 用于两个张量(后两维满足矩阵乘法的维度)相乘或者是矩阵与向量间的乘法,因为其具有广播机制(broadcasting,自动补充维度)。如维度为(b,l,m)和(b,m,n);(l,m)和(b,m,n);(b,c,l,m)和(b,c,m,n);(l,m)和(m)相乘等。【其作用包含torch.mm、torch.bmm和torch.mv】

@运算符 : 其作用类似于torch.matmul。

*运算符 : 其作用类似于torch.mul。

1、torch.mm

import torch
a = torch.ones(1, 2)
print(a)
b = torch.ones(2, 3)
print(b)
output = torch.mm(a, b)
print(output)
print(output.size())
"""
tensor([[1., 1.]])
tensor([[1., 1., 1.],
        [1., 1., 1.]])
tensor([[2., 2., 2.]])
torch.Size([1, 3])
"""

2、torch.bmm

a = torch.randn(2, 1, 2)
print(a)
b = torch.randn(2, 2, 3)
print(b)
output = torch.bmm(a, b)
print(output)
print(output.size())
"""
tensor([[[-0.1187,  0.2110]],

        [[ 0.7463, -0.6136]]])
tensor([[[-0.1186,  1.5565,  1.3662],
         [ 1.0199,  2.4644,  1.1630]],

        [[-1.9483, -1.6258, -0.4654],
         [-0.1424,  1.3892,  0.7559]]])
tensor([[[ 0.2293,  0.3352,  0.0832]],

        [[-1.3666, -2.0657, -0.8111]]])
torch.Size([2, 1, 3])
"""

3、torch.mul

a = torch.ones(2, 3) * 2
print(a)
b = torch.randn(2, 3)
print(b)
output = torch.mul(a, b)
print(output)
print(output.size())
"""
tensor([[2., 2., 2.],
        [2., 2., 2.]])
tensor([[-0.1187,  0.2110,  0.7463],
        [-0.6136, -0.1186,  1.5565]])
tensor([[-0.2375,  0.4220,  1.4925],
        [-1.2271, -0.2371,  3.1130]])
torch.Size([2, 3])
"""

4、torch.mv

mat = torch.randn(3, 4)
print(mat)
vec = torch.randn(4)
print(vec)
output = torch.mv(mat, vec)
print(output)
print(output.size())
print(torch.mm(mat, vec.unsqueeze(1)).squeeze(1))
"""
tensor([[-0.1187,  0.2110,  0.7463, -0.6136],
        [-0.1186,  1.5565,  1.3662,  1.0199],
        [ 2.4644,  1.1630, -1.9483, -1.6258]])
tensor([-0.4654, -0.1424,  1.3892,  0.7559])
tensor([ 0.5982,  2.5024, -5.2481])
torch.Size([3])
tensor([ 0.5982,  2.5024, -5.2481])
"""

5、torch.matmul

# 其作用包含torch.mm、torch.bmm和torch.mv。其他类似,不一一举例。
a = torch.randn(2, 1, 2)
print(a)
b = torch.randn(2, 2, 3)
print(b)
output = torch.bmm(a, b)
print(output)
output1 = torch.matmul(a, b)
print(output1)
print(output1.size())
"""
tensor([[[-0.1187,  0.2110]],

        [[ 0.7463, -0.6136]]])
tensor([[[-0.1186,  1.5565,  1.3662],
         [ 1.0199,  2.4644,  1.1630]],

        [[-1.9483, -1.6258, -0.4654],
         [-0.1424,  1.3892,  0.7559]]])
tensor([[[ 0.2293,  0.3352,  0.0832]],

        [[-1.3666, -2.0657, -0.8111]]])
tensor([[[ 0.2293,  0.3352,  0.0832]],

        [[-1.3666, -2.0657, -0.8111]]])
torch.Size([2, 1, 3])
"""
# 维度为(b,l,m)和(b,m,n);(l,m)和(b,m,n);(b,c,l,m)和(b,c,m,n);(l,m)和(m)等
a = torch.randn(2, 3, 4)
b = torch.randn(2, 4, 5)
print(torch.matmul(a, b).size())
a = torch.randn(3, 4)
b = torch.randn(2, 4, 5)
print(torch.matmul(a, b).size())
a = torch.randn(2, 3, 3, 4)
b = torch.randn(2, 3, 4, 5)
print(torch.matmul(a, b).size())
a = torch.randn(2, 3)
b = torch.randn(3)
print(torch.matmul(a, b).size())
"""
torch.Size([2, 3, 5])
torch.Size([2, 3, 5])
torch.Size([2, 3, 3, 5])
torch.Size([2])
"""

6、@运算符

# @运算符:其作用类似于torch.matmul
a = torch.randn(2, 3, 4)
b = torch.randn(2, 4, 5)
print(torch.matmul(a, b).size())
print((a @ b).size())
a = torch.randn(3, 4)
b = torch.randn(2, 4, 5)
print(torch.matmul(a, b).size())
print((a @ b).size())
a = torch.randn(2, 3, 3, 4)
b = torch.randn(2, 3, 4, 5)
print(torch.matmul(a, b).size())
print((a @ b).size())
a = torch.randn(2, 3)
b = torch.randn(3)
print(torch.matmul(a, b).size())
print((a @ b).size())
"""
torch.Size([2, 3, 5])
torch.Size([2, 3, 5])
torch.Size([2, 3, 5])
torch.Size([2, 3, 5])
torch.Size([2, 3, 3, 5])
torch.Size([2, 3, 3, 5])
torch.Size([2])
torch.Size([2])
"""

7、*运算符

# *运算符:其作用类似于torch.mul
a = torch.ones(2, 3) * 2
print(a)
b = torch.ones(2, 3) * 3
print(b)
output = torch.mul(a, b)
print(output)
print(output.size())
output1 = a * b
print(output1)
print(output1.size())
"""
tensor([[2., 2., 2.],
        [2., 2., 2.]])
tensor([[3., 3., 3.],
        [3., 3., 3.]])
tensor([[6., 6., 6.],
        [6., 6., 6.]])
torch.Size([2, 3])
tensor([[6., 6., 6.],
        [6., 6., 6.]])
torch.Size([2, 3])
"""

附:二维矩阵乘法

神经网络中包含大量的 2D 张量矩阵乘法运算,而使用 torch.matmul 函数比较复杂,因此 PyTorch 提供了更为简单方便的 torch.mm(input, other, out = None) 函数。下表是 torch.matmul 函数和 torch.mm 函数的简单对比。

torch.matmul 函数支持广播,主要指的是当参与矩阵乘积运算的两个张量中其中有一个是 1D 张量,torch.matmul 函数会将其广播成 2D 张量参与运算,最后将广播添加的维度删除作为最终 torch.matmul 函数的返回结果。torch.mm 函数不支持广播,相对应的输入的两个张量必须为 2D。

import torch

input = torch.tensor([[1., 2.], [3., 4.]])
other = torch.tensor([[5., 6., 7.], [8., 9., 10.]])

result = torch.mm(input, other)
print(result)
# tensor([[21., 24., 27.],
#         [47., 54., 61.]])

总结

到此这篇关于pytorch中常用的乘法运算及相关的运算符(@和*)的文章就介绍到这了,更多相关pytorch常用乘法运算及运算符内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

pytorch中常用的乘法运算及相关的运算符(@和*)

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

pytorch中常用的乘法运算有哪些

这篇文章主要介绍“pytorch中常用的乘法运算有哪些”,在日常操作中,相信很多人在pytorch中常用的乘法运算有哪些问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”pytorch中常用的乘法运算有哪些”的疑
2023-06-26

VBS中乘运算符 (*)的作用

本篇内容介绍了“VBS中乘运算符 (*)的作用”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!乘运算符 (*)两个数相乘。result = n
2023-06-08

Python中数字以及算数运算符的相关使用

Python数字 数字数据类型用于存储数值。 他们是不可改变的数据类型,这意味着改变数字数据类型会分配一个新的对象。 当你指定一个值时,Number对象就会被创建:var1 = 1 var2 = 10您也可以使用del语句删除一些对象引用。
2022-06-04

javascript中&&运算符与||运算符的使用方法

本篇文章为大家展示了javascript中&&运算符与||运算符的使用方法,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。前言在前端开发领域中,&&运算符和||运算符是使用率和频繁度比较高的。&&运算
2023-06-25

python中@运算符的用法

小编给大家分享一下python中@运算符的用法,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!在看fastai的代码时,看到这么一段:n=100x = torch.
2023-06-15

C#中?、?.、??、??=运算符的用法

本文主要介绍了C#中?、?.、??、??=运算符的用法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
2023-05-15

SQLserver中的any和all运算符的用法

本文主要介绍了SQL server 中的any和all运算符,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
2023-01-09

灵活运用Golang中的除法运算符

标题:灵活运用Golang中的除法运算符在Golang编程中,除法运算符是我们经常会用到的一个运算符之一。除法运算符有它的一些特点和用法,灵活运用除法运算符能够帮助我们更高效地处理数据和逻辑。本文将通过具体的代码示例,介绍在Golang中
灵活运用Golang中的除法运算符
2024-03-13

php中的运算符及其作用

php运算符用于执行操作和结合值,包括算术运算符(加减乘除余)、比较运算符(等于不等于大小比较)、逻辑运算符(与或非)、赋值运算符(赋值加等于减等于等)、其他运算符(字符串连接数组索引对象属性访问类方法调用)。PHP中的运算符运算符是用于
php中的运算符及其作用
2024-04-26

探究Python运算符的含义和应用:加、减、乘、除

深入理解Python运算符:加法、减法、乘法、除法及其含义,需要具体代码示例在Python编程语言中,运算符是进行各种数学操作的重要工具之一。其中,加法、减法、乘法和除法是最常见的运算符,本文将深入探讨这些运算符的含义及其在Python中
探究Python运算符的含义和应用:加、减、乘、除
2024-01-20

sql中逻辑运算符的用法

sql中的逻辑运算符组合布尔表达式,产生单个布尔值。常用的运算符包括:and:两个表达式都为真时返回真or:至少一个表达式为真时返回真not:反转表达式的真假值这些运算符用于查询、过滤和更新数据,优先级从高到低为 not、and、or,可通
sql中逻辑运算符的用法
2024-05-15

c++中运算符的使用方法

运算符是执行操作的特殊符号或关键字,有不同的类型和执行顺序,主要包括算术运算符用于数学运算,关系运算符用于比较,逻辑运算符用于处理布尔值,赋值运算符用于赋值,指针运算符用于处理指针,位运算符用于对二进制位执行操作,条件运算符用于根据条件结果
c++中运算符的使用方法
2024-04-22

Python中的逻辑运算符用法

本篇内容介绍了“Python中的逻辑运算符用法”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!一、逻辑运算符and在某些场景下,需要同时检查两
2023-06-02

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录