我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python统计词频并绘制图片(附完整代码)

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python统计词频并绘制图片(附完整代码)

效果

请添加图片描述
请添加图片描述
请添加图片描述

1 实现代码

读取txt文件:


def readText(text_file_path):
    with open(text_file_path, encoding='gbk') as f: #
        content = f.read()
    return content

得到文章的词频:


def getRecommondArticleKeyword(text_content,  key_word_need_num = 10, custom_words = [], stop_words =[], query_pattern = 'searchEngine'):
    '''
    :param text_content: 文本字符串
    :param key_word_need_num: 需要的关键词数量
    :param custom_words: 自定义关键词
    :param stop_words: 不查询关键词
    :param query_pattern:
    precision:精确模式————试图将句子最精确地切开,适合文本分析;
    entire:全模式————把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;
    searchEngine:搜索引擎模式————在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词;
    paddle模式————利用PaddlePaddle深度学习框架,训练序列标注(双向GRU)网络模型实现分词。同时支持词性标注。
    :return:
    '''
    # jieba.enable_paddle()
    # paddle.fluid.install_check.run_check()
    if not isinstance(text_content, str):
        raise ValueError('文本字符串类型错误!')
    if not isinstance(key_word_need_num, int):
        raise ValueError('关键词个数类型错误!')
    if not isinstance(custom_words, list):
        raise ValueError('自定义关键词类型错误!')
    if not isinstance(stop_words, list):
        raise ValueError('屏蔽关键词类型错误!')
    if not isinstance(query_pattern, str):
        raise ValueError('查询模式类型错误!')

    # 添加自定义关键词
    for word in custom_words:
        jieba.add_word(word)

    if query_pattern == 'searchEngine':
        key_words = jieba.cut_for_search(text_content)
    elif query_pattern == 'entire':
        key_words = jieba.cut(text_content, cut_all=True, use_paddle=True)
    elif query_pattern == 'precision':
        key_words = jieba.cut(text_content, cut_all=False, use_paddle=True)
    else:
        return []

    # print("拆分后的词: %s" % " ".join(key_words))

    # 过滤后的关键词
    stop_words = set(stop_words)
    word_count = Counter()
    for word in key_words:
        if len(word) > 1 and word not in stop_words:
            word_count[word] += 1

    # res_words = list()
    # for data in word_count.most_common(key_word_need_num):
    #     res_words.append(data[0])
    # return res_words

    return word_count

绘制图片:


def drawWordsCloud(word_count, save_img_filePath='', img_mask_filePath=''):
    # print(word_count)
    # print(type(word_count))

    if len(img_mask_filePath) != 0:
        img_mask = np.array(Image.open(img_mask_filePath)) #打开遮罩图片,将图片转换为数组
        wc = wordcloud.WordCloud(font_path='/Library/Fonts/Arial Unicode.ttf',# 设置中文字体,词云默认字体是“DroidSansMono.ttf字体库”,不支持中文
                                 background_color="white",  # 设置背景颜色
                                 max_words=200,  # 设置最大显示的字数
                                 max_font_size=50,  # 设置字体最大值
                                 random_state=30,  # 设置有多少种随机生成状态,即有多少种配色方案
                                 width=400,
                                 height=200,
                                 mask=img_mask
                                 )
    else:
        wc = wordcloud.WordCloud(font_path='/Library/Fonts/Arial Unicode.ttf',# 设置中文字体,词云默认字体是“DroidSansMono.ttf字体库”,不支持中文
                                 background_color="white",  # 设置背景颜色
                                 max_words=200,  # 设置最大显示的字数
                                 max_font_size=50,  # 设置字体最大值
                                 random_state=30,  # 设置有多少种随机生成状态,即有多少种配色方案
                                 width=400,
                                 height=200
                                 )
    # 绘图
    wc.generate_from_frequencies(word_count)   #从字典生成词云
    plt.imshow(wc)      #显示词云
    plt.axis('off')     #关闭坐标轴
    plt.show()          #显示图像

    # 保存图片
    if len(save_img_filePath) != 0:
        wc.to_file(save_img_filePath)
    else:
        pass

2 完整代码


#-*- coding : utf-8-*-
import jieba
from collections import Counter
import paddle

import wordcloud    #词云展示库
import matplotlib.pyplot as plt     #图像展示库

import time

from PIL import Image
import numpy as np

def timer(func):
    def calculateTime(*args, **kwargs):
        t = time.perf_counter()
        result = func(*args, **kwargs)
        print(f'func {func.__name__} coast time:{time.perf_counter() - t:.8f} s')
        return result
    return calculateTime

def readText(text_file_path):
    with open(text_file_path, encoding='gbk') as f: #
        content = f.read()
    return content

@timer
def getRecommondArticleKeyword(text_content,  key_word_need_num = 10, custom_words = [], stop_words =[], query_pattern = 'searchEngine'):
    '''
    :param text_content: 文本字符串
    :param key_word_need_num: 需要的关键词数量
    :param custom_words: 自定义关键词
    :param stop_words: 不查询关键词
    :param query_pattern:
    precision:精确模式————试图将句子最精确地切开,适合文本分析;
    entire:全模式————把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;
    searchEngine:搜索引擎模式————在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词;
    paddle模式————利用PaddlePaddle深度学习框架,训练序列标注(双向GRU)网络模型实现分词。同时支持词性标注。
    :return:
    '''
    # jieba.enable_paddle()
    # paddle.fluid.install_check.run_check()
    if not isinstance(text_content, str):
        raise ValueError('文本字符串类型错误!')
    if not isinstance(key_word_need_num, int):
        raise ValueError('关键词个数类型错误!')
    if not isinstance(custom_words, list):
        raise ValueError('自定义关键词类型错误!')
    if not isinstance(stop_words, list):
        raise ValueError('屏蔽关键词类型错误!')
    if not isinstance(query_pattern, str):
        raise ValueError('查询模式类型错误!')

    # 添加自定义关键词
    for word in custom_words:
        jieba.add_word(word)

    if query_pattern == 'searchEngine':
        key_words = jieba.cut_for_search(text_content)
    elif query_pattern == 'entire':
        key_words = jieba.cut(text_content, cut_all=True, use_paddle=True)
    elif query_pattern == 'precision':
        key_words = jieba.cut(text_content, cut_all=False, use_paddle=True)
    else:
        return []

    # print("拆分后的词: %s" % " ".join(key_words))

    # 过滤后的关键词
    stop_words = set(stop_words)
    word_count = Counter()
    for word in key_words:
        if len(word) > 1 and word not in stop_words:
            word_count[word] += 1

    # res_words = list()
    # for data in word_count.most_common(key_word_need_num):
    #     res_words.append(data[0])
    # return res_words

    return word_count

def drawWordsCloud(word_count, save_img_filePath='', img_mask_filePath=''):
    # print(word_count)
    # print(type(word_count))

    if len(img_mask_filePath) != 0:
        img_mask = np.array(Image.open(img_mask_filePath)) #打开遮罩图片,将图片转换为数组
        wc = wordcloud.WordCloud(font_path='/Library/Fonts/Arial Unicode.ttf',# 设置中文字体,词云默认字体是“DroidSansMono.ttf字体库”,不支持中文
                                 background_color="white",  # 设置背景颜色
                                 max_words=200,  # 设置最大显示的字数
                                 max_font_size=50,  # 设置字体最大值
                                 random_state=30,  # 设置有多少种随机生成状态,即有多少种配色方案
                                 width=400,
                                 height=200,
                                 mask=img_mask
                                 )
    else:
        wc = wordcloud.WordCloud(font_path='/Library/Fonts/Arial Unicode.ttf',# 设置中文字体,词云默认字体是“DroidSansMono.ttf字体库”,不支持中文
                                 background_color="white",  # 设置背景颜色
                                 max_words=200,  # 设置最大显示的字数
                                 max_font_size=50,  # 设置字体最大值
                                 random_state=30,  # 设置有多少种随机生成状态,即有多少种配色方案
                                 width=400,
                                 height=200
                                 )
    # 绘图
    wc.generate_from_frequencies(word_count)   #从字典生成词云
    plt.imshow(wc)      #显示词云
    plt.axis('off')     #关闭坐标轴
    plt.show()          #显示图像

    # 保存图片
    if len(save_img_filePath) != 0:
        wc.to_file(save_img_filePath)
    else:
        pass



if __name__ == '__main__':
    pass
    # /Users/mac/Downloads/work/retailSoftware/公司项目/test.txt
    text_file_path = "/Users/mac/Downloads/电子书/编程思想/相约星期二/相约星期二.txt"
    # text_file_path = "/Users/mac/Downloads/work/retailSoftware/公司项目/test3.txt"
    text_content = readText(text_file_path)
    # print(text_content)
    # print(JNI_API_getRecommondArticleKeyword(text_content))
    img_mask_filePath = '/Users/mac/Desktop/截屏2021-08-20 下午4.02.10.png'
    img_save_filePath = '/Users/mac/Downloads/test9.png'
    drawWordsCloud(getRecommondArticleKeyword(text_content), img_save_filePath, img_mask_filePath)


到此这篇关于Python统计词频并绘制图片(附完整代码)的文章就介绍到这了,更多相关Python统计词频绘制图片内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python统计词频并绘制图片(附完整代码)

下载Word文档到电脑,方便收藏和打印~

下载Word文档

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录