我的编程空间,编程开发者的网络收藏夹
学习永远不晚

C#并行编程之PLINQ(并行LINQ)

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

C#并行编程之PLINQ(并行LINQ)

用于对内存中的数据做并行运算,也就是说其只支持 LINQ to Object 的并行运算

一、AsParallel(并行化)

就是在集合后加个AsParallel()。

例如:

var numbers = Enumerable.Range(0, 100);
var result = numbers.AsParallel().AsOrdered().Where(i => i % 2 == 0);
foreach (var i in result)
Console.WriteLine(i);

下面我们模拟给ConcurrentDictionary灌入1500w条记录,看看串行和并行效率上的差异,注意我的老爷机是2个硬件线程。

static void Main(string[] args)
{
    var dic = LoadData();

    Stopwatch watch = new Stopwatch();

    watch.Start();

    //串行执行
    var query1 = (from n in dic.Values
                  where n.Age > 20 && n.Age < 25
                  select n).ToList();

    watch.Stop();

    Console.WriteLine("串行计算耗费时间:{0}", watch.ElapsedMilliseconds);

    watch.Restart();

    var query2 = (from n in dic.Values.AsParallel()
                  where n.Age > 20 && n.Age < 25
                  select n).ToList();

    watch.Stop();

    Console.WriteLine("并行计算耗费时间:{0}", watch.ElapsedMilliseconds);

    Console.Read();
}

public static ConcurrentDictionary<int, Student> LoadData()
{
    ConcurrentDictionary<int, Student> dic = new ConcurrentDictionary<int, Student>();

    //预加载1500w条记录
    Parallel.For(0, 15000000, (i) =>
    {
        var single = new Student()
        {
            ID = i,
            Name = "hxc" + i,
            Age = i % 151,
            CreateTime = DateTime.Now.AddSeconds(i)
        };
        dic.TryAdd(i, single);
    });

    return dic;
}

public class Student
{
    public int ID { get; set; }

    public string Name { get; set; }

    public int Age { get; set; }

    public DateTime CreateTime { get; set; }
}

orderby,sum(),average()等等这些聚合函数都是实现了并行化。

二、指定并行度

这个我在前面文章也说过,为了不让并行计算占用全部的硬件线程,或许可能要留一个线程做其他事情。

var query2 = (from n in dic.Values.AsParallel().WithDegreeOfParallelism(Environment.ProcessorCount - 1)
where n.Age > 20 && n.Age < 25
    orderby n.CreateTime descending
    select n).ToList();

三、了解ParallelEnumerable类

首先这个类是Enumerable的并行版本,提供了很多用于查询实现的一组方法,下图为ParallelEnumerable类的方法,记住他们都是并行的。

ConcurrentBag<int> bag = new ConcurrentBag<int>();
 var list = ParallelEnumerable.Range
(0, 10000);
 list.ForAll((i) =>
 {
     bag.Add(i);
 });

 Console.WriteLine("bag集合中元素个数有:{0}", bag.Count);
 Console.WriteLine("list集合中元素个数总和为:{0}", list.Sum());
 Console.WriteLine("list集合中元素最大值为:{0}", list.Max());
 Console.WriteLine("list集合中元素第一个元素为:{0}", list.FirstOrDefault());

四、plinq实现MapReduce算法

mapReduce是一个非常流行的编程模型,用于大规模数据集的并行计算,非常的牛X啊,记得mongodb中就用到了这个玩意。

  • map:  也就是“映射”操作,可以为每一个数据项建立一个键值对,映射完后会形成一个键值对的集合。
  • reduce:“化简”操作,我们对这些巨大的“键值对集合“进行分组,统计等等。

下面我举个例子,用Mapreduce来实现一个对age的分组统计。

static void Main(string[] args)
{
    List<Student> list = new List<Student>()
    {
        new Student(){ ID=1, Name="jack", Age=20},
        new Student(){ ID=1, Name="mary", Age=25},
        new Student(){ ID=1, Name="joe", Age=29},
        new Student(){ ID=1, Name="Aaron", Age=25},
    };

    //这里我们会对age建立一组键值对
    var map = list.AsParallel().ToLookup(i => i.Age, count => 1);

    //化简统计
    var reduce = from IGrouping<int, int> singleMap
                 in map.AsParallel()
                 select new
                 {
                     Age = singleMap.Key,
                     Count = singleMap.Count()
                 };

    ///最后遍历
    reduce.ForAll(i =>
    {
        Console.WriteLine("当前Age={0}的人数有:{1}人", i.Age, i.Count);
    });
}

public class Student
{
    public int ID { get; set; }

    public string Name { get; set; }

    public int Age { get; set; }

    public DateTime CreateTime { get; set; }
}

考虑一个简单的例子,现有一个容量为1000000的单词集,需要我们以降序列出其中出现次数超过100000的单词(和其次数)。Map过程,使用PLINQ将集合按单词分组,这里使用了Lookup容器接口,它与Dictionary类似,但是提供的是键-值集映射;Reduce过程,使用PLINQ归约查询即可。

某一次运行结果如下:

Word: you, Count: 142416
Word: van, Count: 115816
Word: next, Count: 110228

到此这篇关于C#并行编程之PLINQ(并行LINQ)的文章就介绍到这了。希望对大家的学习有所帮助,也希望大家多多支持编程网。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

C#并行编程之PLINQ(并行LINQ)

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

C++并发编程:如何使用并行库(如OpenMP)?

并发编程通过使用多个处理器提升程序性能,openmp 是一个并行编程库,提供指令支持并发任务创建和管理,包括创建并行区域、并行 for 循环、临界区和屏障。C++ 并发编程:掌握并行库(如 OpenMP)并发编程基础并发编程涉及创建和管
C++并发编程:如何使用并行库(如OpenMP)?
2024-05-06

python 多cpu并行编程

python 多线程只能算并发,因为它智能使用一个cpu内核python 下 pp包支持多cpu并行计算安装  pip install pp使用#-*- coding: UTF-8 -*-import math, sys, timeimpo
2023-01-31

Delphi中怎么进行并发编程和并行计算

在Delphi中进行并发编程和并行计算可以使用多线程的方式来实现。下面是一个简单的示例代码:unit MainUnit;interfaceusesSystem.SysUtils, System.Classes, System.Thread
Delphi中怎么进行并发编程和并行计算
2024-03-13

C++并发编程:如何优化并行算法的性能?

运用 c++++ 并行编程技术优化并行算法的性能:1. 使用并行算法库简化算法开发;2. 利用 openmp 指令集指定并行执行区域;3. 减少共享内存竞争,使用无锁数据结构、原子操作和同步机制;4. 通过动态调度算法确保负载均衡,防止线程
C++并发编程:如何优化并行算法的性能?
2024-04-30

如何进行C++代码的并发编程?

如何进行C++代码的并发编程?随着计算机技术的发展,多核处理器和并行计算的应用越来越普遍。对于程序开发者来说,如何利用多核处理器的并行计算能力,提高程序的性能成为一个重要的课题。C++作为一个强大的编程语言,在并发编程方面提供了丰富的工具和
如何进行C++代码的并发编程?
2023-11-03

Mapreduce分布式并行编程

这篇文章主要为大家介绍了Mapreduce分布式并行编程使用详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2022-11-13

Java并发编程之LongAdder执行情况解析

这篇文章主要为大家介绍了Java并发编程之LongAdder执行情况解析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-05-18

C++并发编程:如何管理并行线程中的资源分配?

在多线程程序中,c++++使用互斥锁和原子类型来确保线程对共享资源的正确访问。互斥锁:std::mutex类创建一个互斥锁,允许一次只有一个线程访问共享资源,防止数据竞争。原子类型:std::atomic提供原子操作,防止多个线程同时修改同
C++并发编程:如何管理并行线程中的资源分配?
2024-05-06

C++图形编程并行计算技巧揭秘

图形编程中的并行计算技巧包括:使用 openmp 并行化循环,如 #pragma omp parallel for。使用 cuda 进行 gpu 并行计算,如编写 cuda 内核函数。并行化帧更新,如使用线程渲染不同场景组件。实战案例:并行
C++图形编程并行计算技巧揭秘
2024-05-16

Java并发编程如何创建并运行线程

这篇文章主要介绍“Java并发编程如何创建并运行线程”,在日常操作中,相信很多人在Java并发编程如何创建并运行线程问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Java并发编程如何创建并运行线程”的疑惑有所
2023-06-29

python并发执行之多进程

多进程顾名思义程序启动的时候运行多个进程,每个进程启动一条线程进行程序处理。 没启动一个进程就要单独划分一块内存资源。就像工厂的厂房。为了提高效率每多添加一条生产线就要单独再盖一个厂房。每个厂房相互是独立的。所以启动多进程是很消耗资源的,毕
2023-01-31

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录