Python实现杰卡德距离以及环比算法讲解
前言
NLP-字符串相似性计算、集合相似性度量
提示:以下是本篇文章正文内容,下面案例可供参考
杰卡德距离是什么?
杰卡德距离(Jaccard Distance) 是用来衡量两个集合差异性的一种指标,它是杰卡德相似系数的补集,被定义为1减去Jaccard相似系数。而杰卡德相似系数(Jaccard similarity coefficient),也称杰卡德指数(Jaccard Index),是用来衡量两个集合相似度的一种指标。
定义
Jaccard相似指数用来度量两个集合之间的相似性,它被定义为两个集合交集的元素个数除以并集的元素个数。
Jaccard距离用来度量两个集合之间的差异性,它是Jaccard的相似系数的补集,被定义为1减去Jaccard相似系数。
Python实现
代码如下:
# -*- encoding:utf-8 -*-
import jieba
def Jaccard(model, reference): # terms_reference为源句子,terms_model为候选句子
terms_reference = jieba.cut(reference) # 默认精准模式
terms_model = jieba.cut(model)
grams_reference = set(terms_reference) # 去重;如果不需要就改为list
grams_model = set(terms_model)
temp = 0
for i in grams_reference:
if i in grams_model:
temp = temp + 1
fenmu = len(grams_model) + len(grams_reference) - temp # 并集
try:
jaccard_coefficient = float(temp / fenmu) # 交集
except ZeroDivisionError:
print(model, reference)
return 0
else:
return jaccard_coefficient
环比是什么?
环比的发展速度是报告期水平与前一时期水平之比,表明现象逐期的发展速度。如计算一年内各月与前一个月对比,即2月比1月,3月比2月,4月比3月……12月比11月,说明逐月的发展程度。如分析抗击“非典”期间某些经济现象的发展趋势,环比比同比更说明问题。
学过统计或者经济知识的人都知道,统计指标按其具体内容、实际作用和表现形式可以分为总量指标、相对指标和平均指标。由于采用基期的不同,发展速度可分为同比发展速度、环比发展速度和定基发展速度。简单地说,就是同比、环比与定基比,都可以用百分数或倍数表示。
定基比发展速度,也简称总速度,一般是指报告期水平与某一固定时期水平之比,表明这种现象在较长时期内总的发展速度。同比发展速度,一般指是指本期发展水平与上年同期发展水平对比,而达到的相对发展速度。环比发展速度,一般是指报告期水平与前一时期水平之比,表明现象逐期的发展速度。
同比和环比,这两者所反映的虽然都是变化速度,但由于采用基期的不同,其反映的内涵是完全不同的;一般来说,环比可以与环比相比较,而不能拿同比与环比相比较;而对于同一个地方,考虑时间纵向上发展趋势的反映,则往往要把同比与环比放在一起进行对照。 [1]
Python实现
代码如下:
def month_on_month_ratio(data_list):
mid = 0
length = len(data_list)
res = []
while mid < length-1:
a, b = data_list[mid:mid+2]
res.append((b-a)/a)
mid += 1
return res
以上就是今天分享的内容,本文仅仅简单介绍了杰卡德距离以及环比的Python版实现,希望可以帮到大家,请大家以后多多支持编程网!
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341