我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python使用爬虫爬取贵阳房价的方法详解

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python使用爬虫爬取贵阳房价的方法详解

1 序言

1.1 生存压力带来的哲思

马尔萨斯最早发现,生物按照几何级数高度增殖的天赋能力,总是大于他们的实际生存能力或现实生存群量,依次推想,生物的种内竞争一定是极端残酷且无可避免。姑且不论马尔萨斯是否有必要给人类提出相应的警告,仅是这一现象中隐含的一系列基础问题,譬如,生物的超量繁殖能力的自然限度何在?种内竞争的幸存者依靠什么优势来取胜?以及这些所谓的优势群体如何将自己引向何方?等等,就足以引起任何一位有思想的人不能不怵然(恐惧)深思。

后来,达尔文在他的那部划时代的《物种起源》一书的绪论中,特意提及马尔萨斯学说的科学贡献和启迪作用,可见要成为那个马老教士的知音,并不是一般人够资格的!

1.2 买房&房奴

现在结婚,女方一般要求男方有房有车,其实也不能怪人家女孩子,在社会社会高度发展、动荡的今天,这个要求确实不高。奈何改革开放以来,阶级固化,吾辈难矣!先看看贵阳房价(链家新房:https://gy.fang.lianjia.com/)

不能被时代淘汰了,不能总唉声叹气的,白手起家的的大资本家寥寥无几,人家刘强东就是一个。偶像归偶像,回到现实中来吧,农村孩子,可能买了房,就可能是一辈子的房奴,回到农村,表面光鲜亮丽的被别人崇拜着,心里的苦和委屈只有自己知道。鉴于此,我个人不想做房奴车奴,快乐是自己的,生活是自己的,活出自己的精彩,不是活给别人看的,我想让自己命运的旖旎风景绚丽多姿,现阶段要做的是提升自己能力,不想做房奴!

心血澎湃,感叹完了,该回到今天的主题。何不把这些数据弄到一个文档表格里面分析分析,说干就干,就用爬虫爬取吧,然后写入文档。

2 爬虫 

2.1 基本概念

网络爬虫(Crawler):又称网络蜘蛛,或者网络机器人(Robots). 它是一种按照一定的规则,自动地抓取万维网信息的程序或者脚本。换句话来说,它可以根据网页的链接地址自动获取网页内容。如果把互联网比做一个大蜘蛛网,它里面有许许多多的网页,网络蜘蛛可以获取所有网页的内容。

爬虫是一个模拟人类请求网站行为, 并批量下载网站资源的一种程序或自动化脚本。

  • 爬虫:使用任何技术手段,批量获取网站信息的一种方式。关键在于批量。
  • 反爬虫:使用任何技术手段,阻止别人批量获取自己网站信息的一种方式。关键也在于批量。
  • 误伤:在反爬虫的过程中,错误的将普通用户识别为爬虫。误伤率高的反爬虫策略,效果再好也不能用。
  • 拦截:成功地阻止爬虫访问。这里会有拦截率的概念。通常来说,拦截率越高的反爬虫策略,误伤的可能性就越高。因此需要做个权衡。
  • 资源:机器成本与人力成本的总和。

2.2 爬虫的基本流程 

(1)请求网页:通过 HTTP 库向目标站点发起请求,即发送一个 Request,请求可以包含额外的 headers 等
信息,等待服务器响应!

(2)获得相应内容:如果服务器能正常响应,会得到一个 Response,Response 的内容便是所要获取的页面内容,类型可能有 HTML,Json 字符串,二进制数据(如图片视频)等类型。

(3)解析内容:得到的内容可能是 HTML,可以用正则表达式、网页解析库进行解析。可能是 Json,可以
直接转为 Json 对象解析,可能是二进制数据,可以做保存或者进一步的处理。

(4)存储解析的数据:保存形式多样,可以存为文本,也可以保存至数据库,或者保存特定格式的文件

测试案例:代码 实现: 爬取贵阳房价的页面数据

#==========导 包=============
import requests
#=====step_1 : 指 定 url=========
url = 'https://gy.fang.lianjia.com/ /'
#=====step_2 : 发 起 请 求 :======
#使 用 get 方 法 发 起 get 请 求 , 该 方 法 会 返 回 一 个 响 应 对 象 。 参 数 url 表 示 请 求 对 应 的 url
response = requests . get ( url = url )
#=====step_3 : 获 取 响 应 数 据 :===
#通 过 调 用 响 应 对 象 的 text 属 性 , 返 回 响 应 对 象 中 存 储 的 字 符 串 形 式 的 响 应 数 据 ( 页 面 源 码数 据 )
page_text = response . text
#====step_4 : 持 久 化 存 储=======
with open ('贵阳房价 . html ','w', encoding ='utf -8') as fp:
    fp.write ( page_text )
print (' 爬 取 数 据 完 毕 !!!')

爬 取 数 据 完 毕 !!!
Process finished with exit code 0

3 爬取贵阳房价并写入表格

3.1 结果展示

3.2 代码实现(Python) 

#==================导入相关库==================================
from bs4 import BeautifulSoup
import numpy as np
import requests
from requests.exceptions import  RequestException
import pandas as pd
#=============读取网页=========================================
def craw(url,page):
    try:
        headers = {
            "User-Agent": "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3947.100 Safari/537.36"}
        html1 = requests.request("GET", url, headers=headers,timeout=10)
        html1.encoding ='utf-8' # 加编码,重要!转换为字符串编码,read()得到的是byte格式的
        html=html1.text
        return html
    except RequestException:#其他问题
        print('第{0}读取网页失败'.format(page))
        return None
#==========解析网页并保存数据到表格======================
def pase_page(url,page):
    html=craw(url,page)
    html = str(html)
    if html is not None:
        soup = BeautifulSoup(html, 'lxml')
        "--先确定房子信息,即li标签列表--"
        houses=soup.select('.resblock-list-wrapper li')#房子列表
        "--再确定每个房子的信息--"
        for j in range(len(houses)):#遍历每一个房子
            house=houses[j]
            "名字"
            recommend_project=house.select('.resblock-name a.name')
            recommend_project=[i.get_text()for i in recommend_project]#名字 英华天元,斌鑫江南御府...
            recommend_project=' '.join(recommend_project)
            #print(recommend_project)
            "类型"
            house_type=house.select('.resblock-name span.resblock-type')
            house_type=[i.get_text()for i in house_type]#写字楼,底商...
            house_type=' '.join(house_type)
            #print(house_type)
            "销售状态"
            sale_status = house.select('.resblock-name span.sale-status')
            sale_status=[i.get_text()for i in sale_status]#在售,在售,售罄,在售...
            sale_status=' '.join(sale_status)
            #print(sale_status)
            "大地址"
            big_address=house.select('.resblock-location span')
            big_address=[i.get_text()for i in big_address]#
            big_address=''.join(big_address)
            #print(big_address)
            "具体地址"
            small_address=house.select('.resblock-location a')
            small_address=[i.get_text()for i in small_address]#
            small_address=' '.join(small_address)
            #print(small_address)
            "优势。"
            advantage=house.select('.resblock-tag span')
            advantage=[i.get_text()for i in advantage]#
            advantage=' '.join(advantage)
            #print(advantage)
            "均价:多少1平"
            average_price=house.select('.resblock-price .main-price .number')
            average_price=[i.get_text()for i in average_price]#16000,25000,价格待定..
            average_price=' '.join(average_price)
            #print(average_price)
            "总价,单位万"
            total_price=house.select('.resblock-price .second')
            total_price=[i.get_text()for i in total_price]#总价400万/套,总价100万/套'...
            total_price=' '.join(total_price)
            #print(total_price)
            #=====================写入表格=================================================
            information = [recommend_project, house_type, sale_status,big_address,small_address,advantage,average_price,total_price]
            information = np.array(information)
            information = information.reshape(-1, 8)
            information = pd.DataFrame(information, columns=['名称', '类型', '销售状态','大地址','具体地址','优势','均价','总价'])
            information.to_csv('贵阳房价.csv', mode='a+', index=False, header=False)  # mode='a+'追加写入
        print('第{0}页存储数据成功'.format(page))
    else:
        print('解析失败')
#==================双线程=====================================
import threading
for i  in range(1,100,2):#遍历网页1-101
    url1="https://gy.fang.lianjia.com/loupan/pg"+str(i)+"/"
    url2 = "https://gy.fang.lianjia.com/loupan/pg" + str(i+1) + "/"
    t1 = threading.Thread(target=pase_page, args=(url1,i))#线程1
    t2 = threading.Thread(target=pase_page, args=(url2,i+1))#线程2
    t1.start()
    t2.start()v

总结

本篇文章就到这里了,希望能够给你带来帮助,也希望您能够多多关注编程网的更多内容!     

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python使用爬虫爬取贵阳房价的方法详解

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python爬虫库urllib的使用教程详解

Python 给人的印象是抓取网页非常方便,提供这种生产力的,主要依靠的就是 urllib、requests这两个模块。本文主要给大家介绍一下urllib的使用,感兴趣的可以了解一下
2022-11-21

Python爬虫之线程池的使用方法

这篇文章主要介绍了Python爬虫之线程池的使用方法,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。一、前言学到现在,我们可以说已经学习了爬虫的基础知识,如果没有那些奇奇怪怪的
2023-06-15

python爬虫使用request库处理cookie的方法

这篇文章给大家分享的是有关python爬虫使用request库处理cookie的方法的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。python是什么意思Python是一种跨平台的、具有解释性、编译性、互动性和面向
2023-06-14

python爬虫学习笔记--BeautifulSoup4库的使用详解

目录使用范例常用的对象–Tag常用的对象–NavigableString常用的对象–BeautifulSoup常用的对象–Comment对文档树的遍历tag中包含多个字符串的情况.stripped_strings 去除空白内容搜索文档树–f
2022-06-10

使用python爬虫代理时ip被封的解决方法

小编给大家分享一下使用python爬虫代理时ip被封的解决方法,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!python有哪些常用库python常用的库:1.requesuts;2.scrapy;3.pillow;4.tw
2023-06-14

python中使用XPath爬取小说的方法

这篇“python中使用XPath爬取小说的方法”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“python中使用XPath爬
2023-06-30

python学习-Selenium爬虫之使用代理ip的方法

今天给大家分享的是如何在爬取数据的时候防止IP被封,今天给大家分享两种方法,希望大家可以认真学习,再也不用担心被封IP啦。第一种:降低访问速度,我们可以使用time模块中的sleep,使程序每运行一次后就睡眠1s,这样的话就可以大大的减少
2023-06-02

python爬虫urllib库中parse模块urlparse的使用方法

这篇文章主要介绍了python爬虫urllib库中parse模块urlparse的使用方法,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。在python爬虫urllib库中,u
2023-06-14

使用代理ip遇到反爬虫的解决方法

这篇文章主要介绍使用代理ip遇到反爬虫的解决方法,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!1、分布式爬虫。我们爬虫的时候可以采用分布式的方法,有一定几率起到反爬虫的作用,也可以增加抓取量。2、保存cookies。
2023-06-14

讲解Python的Scrapy爬虫框架使用代理进行采集的方法

1.在Scrapy工程下新建“middlewares.py”# Importing base64 library because we'll need it ONLY in case if the proxy we are going to
2022-06-04

编写Python爬虫抓取豆瓣电影TOP100及用户头像的方法

抓取豆瓣电影TOP100 一、分析豆瓣top页面,构建程序结构 1.首先打开网页http://movie.douban.com/top250start,也就是top页面 然后试着点击到top100的页面,注意带top100的链接依次为htt
2022-06-04

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录