我的编程空间,编程开发者的网络收藏夹
学习永远不晚

TensorFlow在MAC环境下的安装及环境搭建

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

TensorFlow在MAC环境下的安装及环境搭建

给大家分享一下TensorFlow在MAC系统中的安装步骤以及环境搭建的操作流程。

TensorFlow 底层的图模型结构清晰,容易改造;支持分布式训练;可视化效果好。如果做长期项目,接触较大数据集的话,TensorFlow很适用,而且谷歌也在不断优化完备它,对于使用深度学习朋友,TensorFlow是一个很好的工具。

在学习了一段时间台大李宏毅关于deep learning的课程,以及一些其他机器学习的书之后,终于打算开始动手进行一些实践了。

感觉保完研之后散养状态下,学习效率太低了,于是便想白天学习,晚上对白天学习的知识做一些总结和记录,如果有不妥的地方,欢迎大家批评指教,共同进步。

一、深度学习框架的选择

随着深度学习日趋火热,技术的逐渐兴起,各种深度学习框架也层出不穷。

目前使用普遍的框架有Tensorflow、Caffe、PyTorch、Theano、CNTK等,那么在这么多框架中该如何选择呢?

笔者作为一个初学者,架不住Tensorflow的名气之大,所以最开始便选择了Tensorflow。当然不仅仅只是因为名气大,Tensorflow作为谷歌主持的开源项目,它的社区热度目前看来是旺盛的,而且现在也最为流行。听说,它是在谷歌总结了DistBelief的经验教训上形成的;它运行高效、可扩展性强,可以运行在手机、普通电脑、计算机群上。

下面再简单介绍一下其他深度学习框架的特点:

(1) Caffe:卷积神经网络框架,专注于卷积神经网络和图像处理,因为是基于C++语言,所以执行速度非常的快。

(2) PyTorch:动态computation graph!!!(笔者学习Tensorflow一段后,便会转学PyTorch试试看)

(3) Theano:因其定义复杂模型很容易,在研究中比较流行。

(4) CNTK:微软开发的,微软称其在语音和图像识别方面比其他框架更有优势。不过代码只支持C++.

Tensorflow的一些特性就不再说了,网络上相关资料也有很多。

下面就介绍一下Tensorflow的安装,笔者的安装顺序是首先安装Anaconda、然后安装Tensorflow、再安装Pycharm。

二、安装Anaconda

安装环境:
查看图片

虽然笔者用的是mac,自带了Python,但是还是先安装了Anaconda(点击进入官网)。因为它集成了很多Python的第三方库,而且可以方便的管理不同版本的Python,在不同版本的Python之间切换。而且Anaconda是一个科学计算环境,在电脑上安装完Anaconda之后,除了相当于安装了Python,也安装好了一些常用的库。

查看图片

笔者安装的是Python 2.7版的Anaconda,在安装好Anaconda之后,就已经安装好了Python和一些常用的库了。此外,还自动安装了Spyder。

Spyder是Python一个简单的集成开发环境,和其他的Python开发环境相比,它最大的优点就是模仿MATLAB的“工作空间”的功能,可以很方便地观察和修改数组的值。

在终端中输入Spyder就可以打开它了,如下图所示:

查看图片
查看图片

但是笔者更喜欢使用Pycharm作为开发环境

三、建立、激活、安装Tensorflow

打开终端,在上面输入:


conda create -n tensorflow python=2.7

查看图片

然后等执行完毕之后,再执行:


source activate tensorflow

至此就激活了运行环境。

然后再执行pip install tensorflow以进行Tensorflow的安装。

然后再执行以下Hello Tensorflow代码测试Tensorflow是否安装成


import tensorflow as tf hello = tf.constant('Hello Tensorflow!') sess = tf.Session() print(sess.run(hello)) a = tf.constant(10) b = tf.constant(32) printf(sess.run(a+b))

如果正常的话会提示:


Hello Tensorflow! 42

四、PyCharm IDE

一直使用终端开发的话,实在是太过难用了。笔者选择了PyCharm作为开发环境,官网链接。这里笔者用的是社区版(free)。

(1)首先新建一个Pycharm的工程
查看图片

因为是做Tensorflow的开发,所以这里我们只需要选择图中所示的interpreter即可。


~/anaconda2/envs/tensorflow/bin/python

这样就把Tensorflow环境包括了进来,超级方便。

如果平时开发,想用一些轻量级的环境,就选择其他Python解释器就可以了。

(2)运行一个demo进行测试


import tensorflow as tf hello = tf.constant('Hello, Tensorflow!') sess = tf.Session() print(sess.run(hello)) a = tf.constant(66) b = tf.constant(88) print(sess.run(a + b))

查看图片

如果出现以下提示,就说明成功了,可以开始接下来的学习了~


Hello, Tensorflow! 154

五、总结

至此,我们便在机器上安装好了Tensorflow以及其开发环境。

总的来说,只需要以下几步:

安装Anaconda 通过conda建立Tensorflow运行环境 激活Tensorflow运行环境 安装Pycharm IDE

大家在本地MAC上安装的时候,很多坑是需要留意的,我们把经常遇到的坑给大家做了总结,希望你在安装的时候尽量的避免这些地方。

一般都是服务器上直接开干,但是也会有人在本机上装一下的,这里写下,tensorflow在mac上安装的坑,给后来者一个参考

1 安装教程

直接去官网按照说明安装就好,如果要安装GPU版本,先安装官网上的mac gnu设置教程,装下cud相关的工具,最后有个sample跑过了就算gpu计算环境配置成功

2 第一个坑

按照官网上的教程,直接使用pip安装方法就好,注意pip版本要大于8.1,然后你直接sudo pip install tensorflow (不加sudo会权限不够),然后一般会不通过,提示卸载numpy不成功。

我认为是这样的原因:numpy是mac系统默认装的库,并且设置有保护,所以无法卸载,然后tensorflow需要更高版本的numpy,所以就不成功啦

解决方法如下:

去除mac系统的保护,1 重启电脑 2 重启看见苹果logo了,按住command + R ,进入恢复模式 3 然后在上面的终端工具里面,进入终端 4 在终端输入 csrutil disable 5 重启,然后再次执行pip安装 还不明白的话看这篇博客

3 第二个坑

操作成功的话,就成功安装啦,然后,进去python编辑行

输入 import tensorflow 然后你会发现,RuntimeError: module compiled against API version 0xa but this version of numpy is 0x9 这个错误,说是你bumpy版本太低,这个时候表示日狗,刚才去除了保护,安装的时候已经bumpy更新到最新版了,查看numpy的版本也是最新版,查看版本方法可自行百度。

解决这个坑的方法如下:


import numpy
numpy.__path__
#你会发现出现了一个包含XXX/Framework/xxx的路径,没错这还是系统安装的那个numpy的路劲,
#虽然你升级了,然是导入包的时候还是按照之前的路劲导入,所以版本过低,这个时候只需要把老的路径去掉
#就像这样,在终端中(不是python编辑模式下)输入:
sudo mv /System/Library/Frameworks/Python.framework/Versions/2.7/Extras/lib/python/numpy 
/System/Library/Frameworks/Python.framework/Versions/2.7/Extras/lib/python/numpy_old

然后再次进入python编辑模式,输入


import numpy
numpy.__path__
#这个时候,路劲就变成了,我们升级的那个numpy的路径了,是个XXX/local/xxx

然后你再import tensorflow 就没问题啦,就可以去输出hello world 了

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

TensorFlow在MAC环境下的安装及环境搭建

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

TensorFlow在MAC环境下的安装及环境搭建

给大家分享一下TensorFlow在MAC系统中的安装步骤以及环境搭建的操作流程。 TensorFlow 底层的图模型结构清晰,容易改造;支持分布式训练;可视化效果好。如果做长期项目,接触较大数据集的话,TensorFlow很适用,而且谷歌
2022-06-04

环境搭建:linux环境下安装mysql数库

1. 安装数据库1) yum -y install mysql-server(简单)yum命令自动从网上寻找mysql服务资源,下载至本地并完成安装  2) 也可以自己在网上下载mysql服务,通过xftp传输至Linux系统,自己安装(一般安装在usr或op
环境搭建:linux环境下安装mysql数库
2016-01-21

Mac下如何安装和搭建Homestead 2.0环境

这篇文章主要介绍“Mac下如何安装和搭建Homestead 2.0环境”,在日常操作中,相信很多人在Mac下如何安装和搭建Homestead 2.0环境问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Mac下如
2023-06-22

mac 环境下adb的安装

1、安装 AndroidStudio在Mac上开发Android,开发环境配置比window方便太多了,下一步下一步点击就好了。2、配置环境在安装完成之后,将android的adb工具所在目录加入环境变量里面去(这步忽略,默认操作已在第一步).2.1 创建.b
mac 环境下adb的安装
2014-11-07

在mac上搭建python环境

首先尊重原创:http://blog.justbilt.com/2014/07/02/setup_python_on_mac/这两天重新搞了下python的环境,发现好多地方还是容易忘记,因此有了这篇文章,以后方便查看。mac系统其实自带了
2023-01-31

Android环境搭建之Android studio的安装及环境配置

Android studio:注意:在下载之前,先查看自己电脑的操作系统是64位还是32位,下载对应的版本1、Android studio的下载:下载链接:http://www.android-studio.org/index. php安装
2022-06-06

[ 环境搭建篇 ] 安装 java 环境并配置环境变量(附 JDK1.8 安装包)

🍬 博主介绍 👨‍🎓 博主介绍:大家好,我是 _PowerShell ,很高兴认识大家~ ✨主攻领域:【渗透领域】【数据通信】 【通讯安全】 【web安全】【面试分析】 🎉
2023-08-17

mac下的nodejs环境安装的步骤

说明 我们以brew的方式进行安装。 node安装#我们安装时要附加参数,因为在新版中,默认的安装参数不会安装npm包管理器。 brew install node --with-npm #检查安装是否成功 node -v v6.0.0
2022-06-04

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录