我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Tensorflow 如何从checkpoint文件中加载变量名和变量值

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Tensorflow 如何从checkpoint文件中加载变量名和变量值

假设你已经经过上千次的迭代,并且得到了以下模型:

在这里插入图片描述

则从这些checkpoint文件中加载变量名和变量值代码如下:


model_dir = './ckpt-182802'
import tensorflow as tf
from tensorflow.python import pywrap_tensorflow
reader = pywrap_tensorflow.NewCheckpointReader(model_dir)
var_to_shape_map = reader.get_variable_to_shape_map()
for key in var_to_shape_map:
     print("tensor_name: ", key)
     print(reader.get_tensor(key)) # Remove this is you want to print only variable names

Mnist

下面将给出一个基于卷积神经网络的手写数字识别样例:


# -*- coding: utf-8 -*-
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from tensorflow.python.framework import graph_util
log_dir = './tensorboard'
mnist = input_data.read_data_sets(train_dir="./mnist_data",one_hot=True)
if tf.gfile.Exists(log_dir):
        tf.gfile.DeleteRecursively(log_dir)
tf.gfile.MakeDirs(log_dir)

#定义输入数据mnist图片大小28*28*1=784,None表示batch_size
x = tf.placeholder(dtype=tf.float32,shape=[None,28*28],name="input")
#定义标签数据,mnist共10类
y_ = tf.placeholder(dtype=tf.float32,shape=[None,10],name="y_")
#将数据调整为二维数据,w*H*c---> 28*28*1,-1表示N张
image = tf.reshape(x,shape=[-1,28,28,1])

#第一层,卷积核={5*5*1*32},池化核={2*2*1,1*2*2*1}
w1 = tf.Variable(initial_value=tf.random_normal(shape=[5,5,1,32],stddev=0.1,dtype=tf.float32,name="w1"))
b1= tf.Variable(initial_value=tf.zeros(shape=[32]))
conv1 = tf.nn.conv2d(input=image,filter=w1,strides=[1,1,1,1],padding="SAME",name="conv1")
relu1 = tf.nn.relu(tf.nn.bias_add(conv1,b1),name="relu1")
pool1 = tf.nn.max_pool(value=relu1,ksize=[1,2,2,1],strides=[1,2,2,1],padding="SAME")
#shape={None,14,14,32}
#第二层,卷积核={5*5*32*64},池化核={2*2*1,1*2*2*1}
w2 = tf.Variable(initial_value=tf.random_normal(shape=[5,5,32,64],stddev=0.1,dtype=tf.float32,name="w2"))
b2 = tf.Variable(initial_value=tf.zeros(shape=[64]))
conv2 = tf.nn.conv2d(input=pool1,filter=w2,strides=[1,1,1,1],padding="SAME")
relu2 = tf.nn.relu(tf.nn.bias_add(conv2,b2),name="relu2")
pool2 = tf.nn.max_pool(value=relu2,ksize=[1,2,2,1],strides=[1,2,2,1],padding="SAME",name="pool2")
#shape={None,7,7,64}
#FC1
w3 = tf.Variable(initial_value=tf.random_normal(shape=[7*7*64,1024],stddev=0.1,dtype=tf.float32,name="w3"))
b3 = tf.Variable(initial_value=tf.zeros(shape=[1024]))
#关键,进行reshape
input3 = tf.reshape(pool2,shape=[-1,7*7*64],name="input3")
fc1 = tf.nn.relu(tf.nn.bias_add(value=tf.matmul(input3,w3),bias=b3),name="fc1")
#shape={None,1024}
#FC2
w4 = tf.Variable(initial_value=tf.random_normal(shape=[1024,10],stddev=0.1,dtype=tf.float32,name="w4"))
b4 = tf.Variable(initial_value=tf.zeros(shape=[10]))
fc2 = tf.nn.bias_add(value=tf.matmul(fc1,w4),bias=b4,name="logit")
#shape={None,10}
#定义交叉熵损失
# 使用softmax将NN计算输出值表示为概率
y = tf.nn.softmax(fc2,name="out")

# 定义交叉熵损失函数
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=fc2,labels=y_)
loss = tf.reduce_mean(cross_entropy)
tf.summary.scalar('Cross_Entropy',loss)
#定义solver
train = tf.train.AdamOptimizer(learning_rate=0.0001).minimize(loss=loss)
for var in tf.trainable_variables():
	print var
#train = tf.train.AdamOptimizer(learning_rate=0.0001).minimize(loss=loss)

#定义正确值,判断二者下标index是否相等
correct_predict = tf.equal(tf.argmax(y,1),tf.argmax(y_,1))
#定义如何计算准确率
accuracy = tf.reduce_mean(tf.cast(correct_predict,dtype=tf.float32),name="accuracy")
tf.summary.scalar('Training_ACC',accuracy)
#定义初始化op
merged = tf.summary.merge_all()
init = tf.global_variables_initializer()
saver = tf.train.Saver()
#训练NN
with tf.Session() as session:
    session.run(fetches=init)
    writer = tf.summary.FileWriter(log_dir,session.graph) #定义记录日志的位置
    for i in range(0,500):
        xs, ys = mnist.train.next_batch(100)
        session.run(fetches=train,feed_dict={x:xs,y_:ys})
        if i%10 == 0:
            train_accuracy,summary = session.run(fetches=[accuracy,merged],feed_dict={x:xs,y_:ys})
            writer.add_summary(summary,i)
            print(i,"accuracy=",train_accuracy)
    '''
    #训练完成后,将网络中的权值转化为常量,形成常量graph,注意:需要x与label
    constant_graph = graph_util.convert_variables_to_constants(sess=session,
                                                            input_graph_def=session.graph_def,
                                                            output_node_names=['out','y_','input'])
    #将带权值的graph序列化,写成pb文件存储起来
    with tf.gfile.FastGFile("lenet.pb", mode='wb') as f:
        f.write(constant_graph.SerializeToString())
    '''
    saver.save(session,'./ckpt')

补充:查看tensorflow产生的checkpoint文件内容的方法

tensorflow在保存权重模型时多使用tf.train.Saver().save 函数进行权重保存,保存的ckpt文件无法直接打开,但tensorflow提供了相关函数 tf.train.NewCheckpointReader 可以对ckpt文件进行权重查看。


import os
from tensorflow.python import pywrap_tensorflow

checkpoint_path = os.path.join('modelckpt', "fc_nn_model")
# Read data from checkpoint file
reader = pywrap_tensorflow.NewCheckpointReader(checkpoint_path)
var_to_shape_map = reader.get_variable_to_shape_map()
# Print tensor name and values
for key in var_to_shape_map:
    print("tensor_name: ", key)
    print(reader.get_tensor(key))

其中‘modelckpt'是存放.ckpt文件的文件夹,"fc_nn_model"是文件名,如下图所示。

在这里插入图片描述 

var_to_shape_map是一个字典,其中的键值是变量名,对应的值是该变量的形状,如


{‘LSTM_input/bias_LSTM/Adam_1': [128]}

想要查看某变量值时,需要调用get_tensor函数,即输入以下代码:


reader.get_tensor('LSTM_input/bias_LSTM/Adam_1')

以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程网。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Tensorflow 如何从checkpoint文件中加载变量名和变量值

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python中如何使用变量创建文件名

本篇内容介绍了“Python中如何使用变量创建文件名”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!使用格式化的字符串文字来使用变量创建文件名
2023-07-05

PHP如何将文件名存储到变量并计算文件中的行数

这篇文章主要为大家展示了“PHP如何将文件名存储到变量并计算文件中的行数”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“PHP如何将文件名存储到变量并计算文件中的行数”这篇文章吧。首先我们创建一个
2023-06-20

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录