Python 图片文字识别的实现之PaddleOCR
前言
什么是OCR?
光学字符识别(Optical Character Recognition, OCR),是指对文本资料的图像文件进行分析识别处理,获取文字及版面信息的过程。简而言之,检测图像中的文本资料,并且识别出文本的内容。
那么有哪些应用场景呢?
其实我们日常生活中处处都有ocr的影子,比如在疫情期间身份证识别录入信息、车辆车牌号识别、自动驾驶等。我们的生活中,机器学习已经越来越多的扮演着重要角色,也不再是神秘的东西。
OCR的技术路线是什么呢?
ocr的运行方式如下图,输入->图像预处理->文字检测->文本识别->输出。
本文主要是介绍一个博主使用的比较好的OCR开源项目,在这里分享给大家——PaddleOCR。
项目Github地址: PaddleOCR地址
我会按照刚接触的状态,梳理一下验证使用该项目的过程。
项目使用
先把项目从github上clone下来,慢慢分析。
项目结构
首先我们看一下项目的构造。
发现项目有中文的介绍说明,这就很方便了,点开按照官方的说明开始操作。
环境部署
点开README.md,,可以从文档教程中看到第一步就是教你如何安装环境。
由于内容过多,我就做个概括,方便大家直接上手。
1、安装Anaconda,构造虚拟环境
这里可以参考我的另一篇文章,里面很详细:Python 机器学习第一章环境配置图解流程
官方给的是python3.8的虚拟环境,我们也构造一个,打开Anaconda Prompt。
输入命令:
conda create -n paddle_env python=3.8
激活环境:
conda activate paddle_env
2、依赖包下载
paddlepaddle安装
pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
layoutparser安装
pip3 install -U https://paddleocr.bj.bcebos.com/whl/layoutparser-0.0.0-py3-none-any.whl
Shapely安装,这个需要下载,下载地址:Shapely下载地址
我选的是这个
安装命令:
pip install Shapely-1.8.0-cp38-cp38-win_amd64.whl
paddleocr安装
pip install paddleocr -i https://mirror.baidu.com/pypi/simple
好的,环境有点多,都安装好了就开始上手使用吧。
测试代码
官方给出了两种模式,一是命令行执行,一是代码执行。为了直观的看到配置,我这里使用的是代码模式。
准备一张带文字的图片
测试代码如下
#!/user/bin/env python
# coding=utf-8
"""
@project : ocr_paddle
@author : huyi
@file : test.py
@ide : PyCharm
@time : 2021-11-15 14:56:20
"""
from paddleocr import PaddleOCR, draw_ocr
# Paddleocr目前支持的多语言语种可以通过修改lang参数进行切换
# 例如`ch`, `en`, `fr`, `german`, `korean`, `japan`
ocr = PaddleOCR(use_angle_cls=True, use_gpu=False,
lang="ch") # need to run only once to download and load model into memory
img_path = './data/2.jpg'
result = ocr.ocr(img_path, cls=True)
for line in result:
# print(line[-1][0], line[-1][1])
print(line)
# 显示结果
from PIL import Image
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores, font_path='./fonts/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
代码说明
1、因为我的电脑没有显卡,所以设置了use_gpu=False。
2、显示结果部分会将识别的文字用框标出来,并且展示识别的结果。
验证一下
我们看到,打印的内容有识别出来的每句话所在的图片位置,以及识别结果和可信度。而上面的结果图中,将每句话对应的文字都框了出来。效果很不错!
参数补充
官方还给出了一些参数,可以调整输出的内容。可以参看quickstart.md文件。参数补充:
- 单独使用检测:设置`--rec`为`false`
- 单独使用识别:设置`--det`为`false`
官方还提供一个标准的json结构输出数据
PP-Structure的返回结果为一个dict组成的list,示例如下
```shell
[{ 'type': 'Text',
'bbox': [34, 432, 345, 462],
'res': ([[36.0, 437.0, 341.0, 437.0, 341.0, 446.0, 36.0, 447.0], [41.0, 454.0, 125.0, 453.0, 125.0, 459.0, 41.0, 460.0]],
[('Tigure-6. The performance of CNN and IPT models using difforen', 0.90060663), ('Tent ', 0.465441)])
}
]
```
总结
总的来说,这个项目还是很有意思的,训练的部分我就不多赘述了,毕竟准备数据挺麻烦的。回头我再想想这个项目可不可以魔改成好用的工具。
分享:
我们根本不需要最后的落脚点,只要不断前进就好了,只要不停下,道路就会不断延伸。——《进击的巨人》
如果本文对你有帮助的话,请不要吝啬你的赞,谢谢!
到此这篇关于Python 图片文字识别的实现之PaddleOCR的文章就介绍到这了,更多相关Python 文字识别内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341