我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python怎么计算图片数据集的均值方差

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python怎么计算图片数据集的均值方差

本文小编为大家详细介绍“Python怎么计算图片数据集的均值方差”,内容详细,步骤清晰,细节处理妥当,希望这篇“Python怎么计算图片数据集的均值方差”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。

Python批量reshape图片

# -*- coding: utf-8 -*-"""Created on Thu Aug 23 16:06:35 2018@author: libo"""from PIL import Imageimport osdef image_resize(image_path, new_path):           # 统一图片尺寸    print('============>>修改图片尺寸')    for img_name in os.listdir(image_path):        img_path = image_path + "/" + img_name    # 获取该图片全称        image = Image.open(img_path)              # 打开特定一张图片        image = image.resize((512, 512))          # 设置需要转换的图片大小        # process the 1 channel image        image.save(new_path + '/'+ img_name)    print("end the processing!")if __name__ == '__main__':    print("ready for ::::::::  ")    ori_path = r"Z:\pycharm_projects\ssd\VOC2007\JPEGImages"                # 输入图片的文件夹路径    new_path = 'Z:/pycharm_projects/ssd/VOC2007/reshape'                   # resize之后的文件夹路径    image_resize(ori_path, new_path)
import osfrom PIL import Imageimport matplotlib.pyplot as pltimport numpy as npfrom scipy.misc import imreadfilepath = r'Z:\pycharm_projects\ssd\VOC2007\reshape'  # 数据集目录pathDir = os.listdir(filepath)R_channel = 0G_channel = 0B_channel = 0for idx in range(len(pathDir)):    filename = pathDir[idx]    img = imread(os.path.join(filepath, filename)) / 255.0    R_channel = R_channel + np.sum(img[:, :, 0])    G_channel = G_channel + np.sum(img[:, :, 1])    B_channel = B_channel + np.sum(img[:, :, 2])num = len(pathDir) * 512 * 512  # 这里(512,512)是每幅图片的大小,所有图片尺寸都一样R_mean = R_channel / numG_mean = G_channel / numB_mean = B_channel / numR_channel = 0G_channel = 0B_channel = 0for idx in range(len(pathDir)):    filename = pathDir[idx]    img = imread(os.path.join(filepath, filename)) / 255.0    R_channel = R_channel + np.sum((img[:, :, 0] - R_mean) ** 2)    G_channel = G_channel + np.sum((img[:, :, 1] - G_mean) ** 2)    B_channel = B_channel + np.sum((img[:, :, 2] - B_mean) ** 2)R_var = np.sqrt(R_channel / num)G_var = np.sqrt(G_channel / num)B_var = np.sqrt(B_channel / num)print("R_mean is %f, G_mean is %f, B_mean is %f" % (R_mean, G_mean, B_mean))print("R_var is %f, G_var is %f, B_var is %f" % (R_var, G_var, B_var))

可能有点慢,慢慢等着就行。。。。。。。

最后得到的结果是介个

Python怎么计算图片数据集的均值方差

参考

计算数据集均值和方差

import osfrom PIL import Image  import matplotlib.pyplot as pltimport numpy as npfrom scipy.misc import imread filepath = ‘/home/JPEGImages‘ # 数据集目录pathDir = os.listdir(filepath)R_channel = 0G_channel = 0B_channel = 0for idx in xrange(len(pathDir)):    filename = pathDir[idx]    img = imread(os.path.join(filepath, filename))    R_channel = R_channel + np.sum(img[:,:,0])    G_channel = G_channel + np.sum(img[:,:,1])    B_channel = B_channel + np.sum(img[:,:,2])num = len(pathDir) * 384 * 512 # 这里(384,512)是每幅图片的大小,所有图片尺寸都一样R_mean = R_channel / numG_mean = G_channel / numB_mean = B_channel / num
R_channel = 0G_channel = 0B_channel = 0
for idx in xrange(len(pathDir)):    filename = pathDir[idx]    img = imread(os.path.join(filepath, filename))    R_channel = R_channel + np.sum((img[:,:,0] - R_mean)**2)    G_channel = G_channel + np.sum((img[:,:,1] - G_mean)**2)    B_channel = B_channel + np.sum((img[:,:,2] - B_mean)**2)R_var = R_channel / numG_var = G_channel / numB_var = B_channel / numprint("R_mean is %f, G_mean is %f, B_mean is %f" % (R_mean, G_mean, B_mean))print("R_var is %f, G_var is %f, B_var is %f" % (R_var, G_var, B_var))

读到这里,这篇“Python怎么计算图片数据集的均值方差”文章已经介绍完毕,想要掌握这篇文章的知识点还需要大家自己动手实践使用过才能领会,如果想了解更多相关内容的文章,欢迎关注编程网行业资讯频道。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python怎么计算图片数据集的均值方差

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python怎么计算图片数据集的均值方差

本文小编为大家详细介绍“Python怎么计算图片数据集的均值方差”,内容详细,步骤清晰,细节处理妥当,希望这篇“Python怎么计算图片数据集的均值方差”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。Python批
2023-06-30

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录