我的编程空间,编程开发者的网络收藏夹
学习永远不晚

【ChatGLM】在电脑部署属于自己的人工智能/ChatGPT平替/可离线/可发布

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

【ChatGLM】在电脑部署属于自己的人工智能/ChatGPT平替/可离线/可发布

【ChatGLM】在电脑部署属于自己的人工智能

1、 前言

本文能实现在自己的电脑或云服务器上部署属于自己的语言AI——ChatGLM-6B,可以离线使用,也可以生成web网页在线发给朋友尝试。

ChatGLM-6B 是一个由清华大学的团队开源的、支持中英双语问答的对话语言模型,基于 General Language Model (GLM) 架构,具有 62 亿参数。本文旨在介绍如何在电脑部署属于自己的人工智能/可离线/可发布。这是一个有趣而有意义的项目,可以让你体验到人工智能的魅力,也可以让你拥有一个自己定制的智能助手。详情点击参考ChatGLM开发者博客

GPT 模型目前只有 GPT-2 的小规模版本(1.5 亿参数)是开源的,其它版本都是闭源的,只能通过 OpenAI 的 API 来访问。ChatGLM-6B 是完全开源的,可以在Github下载和使用。GPT 模型的可用性受到限制,需要申请权限和付费才能使用。ChatGLM-6B 的可用性更高,可以在本地部署和修改。

ChatGLM-6B 和 GPT 模型对比

在这里插入图片描述

2、虚拟环境搭建

要搭建 conda 虚拟环境,你需要先安装 conda ,它是一个用于管理 Python 和其他语言的包和环境的工具。你可以从 https://www.anaconda.com/products/individual 下载并安装 Anaconda 或 Miniconda。

创建一个虚拟环境,并且指定其中的 Python 版本,这里使用了python3.10:conda create --name myenv python=3.10( myenv 是你想要给这个环境起的名字)。
激活这个虚拟环境:conda activate myenv,这样你就可以在这个环境中安装和使用包了。

3、下载安装所需的依赖

点击前往GitHub下载作者开源的文件接着进入创建好的conda虚拟环境中,进入开源文件所下载到的文件夹,例如我存放在X:\python\glm310\ChatGLM-6B中。用以下命令 cd /d X:\python\glm310\ChatGLM-6B进入

用以上命令即可进入

接着输入pip install -r requirements.txt安装所需要的依赖项
在这里插入图片描述
由于安装的依赖项中的torch模块是only cpu的,即不能把模型放进显卡运算的版本,所以我们在下载完毕后,在控制台输入pip uninstall torch卸载torch。点击进入pytorch官网翻到主页下端根据自己安装的cuda版本选择下载对应的torch-gpu。
复制划线处命令去控制台运行
如何查看cuda版本与显卡信息在控制台输入nvidia-smi即可。
在这里插入图片描述
如果没有安装cuda的请参考 在conda虚拟环境中配置cuda+cudnn+pytorch深度学习环境(新手必看!简单可行!),cuda版本推荐cuda 11.7。

4、ChatGLM模型下载与修改

点击进入作者的网盘下载模型
在这里插入图片描述
把他们下载到电脑,例如我存放在D:\ChatGLM-6B中。进入刚开始下载开源文件的文件夹打开web_demo.py文件,修改模型。

在这里插入图片描述
修改模型加载路径为模型下载的地址

tokenizer = AutoTokenizer.from_pretrained("D:\chatGLM", trust_remote_code=True)model = AutoModel.from_pretrained("D:\chatGLM", trust_remote_code=True).half().quantize(4).cuda()model = model.eval()

根据自身的显存修改模型,例如我的电脑显存为6G,即修改为

`# 按需修改,目前只支持 4/8 bit 量化model = AutoModel.from_pretrained("D:\chatGLM", trust_remote_code=True).half().quantize(4).cuda()

`在这里插入图片描述
若要在线发布,把web_demo.py中最后一段代码的share=False改成Ture即可

demo.queue().launch(share=True, inbrowser=True)

5、美化与发布

美化生成的界面,最简单的方法就是在以下这行代码增加主题参数,gradio模块预设了多种不同的生成web的主题,详情可参考gradio官网

`with gr.Blocks(theme=Soft()) as demo:`

最后点击运行即可

在这里插入图片描述

顺便提一句:在控制台输入nvidia-smi -l 1可以即时监控gpu显存使用情况

效果图

在这里插入图片描述
生成在线链接发送给到微信打开效果图
在这里插入图片描述

参考文献

A. Zeng等, 《GLM-130B: An Open Bilingual Pre-trained Model》, 发表于 The Eleventh International Conference on Learning Representations, 2月 2023. 见于: 2023年3月30日. [在线]. 载于: https://openreview.net/forum?id=-Aw0rrrPUF

开发者GitHub:https://github.com/THUDM/ChatGLM-6B

来源地址:https://blog.csdn.net/Dec1steee/article/details/129846815

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

【ChatGLM】在电脑部署属于自己的人工智能/ChatGPT平替/可离线/可发布

下载Word文档到电脑,方便收藏和打印~

下载Word文档

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录