我的编程空间,编程开发者的网络收藏夹
学习永远不晚

遗传算法(Genetic Algorithm,GA)

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

遗传算法(Genetic Algorithm,GA)

这是一篇关于遗传算法的总结博客,包括算法思想,算法步骤,python实现的两个简单例子,算法进阶(持续更新ing)。

目录

1 算法思想

遗传算法的应用很多,诸如寻路问题,8数码问题,囚犯困境,动作控制,找圆心问题(在一个不规则的多边形中,寻找一个包含在该多边形内的最大圆圈的圆心),TSP问题,生产调度问题,人工生命模拟等。

遗传算法起源于对生物系统所进行的计算机模拟研究,是一种随机全局搜索优化方法,它模拟了自然选择和遗传中发生的复制、交叉(crossover)和变异(mutation)等现象,从任一初始种群(Population)出发,通过随机选择、交叉和变异操作,产生一群更适合环境的个体,使群体进化到搜索空间中越来越好的区域,这样一代一代不断繁衍进化,最后收敛到一群最适应环境的个体(Individual),从而求得问题的优质解。

举个已经举烂的例子:
我们把要求的函数曲线想象成一个一个山峰和山谷组成的山脉。那么我们可以设想每一个可能解都是一只袋鼠,我们希望它们不断的向更高处跳去,直到跳到最高的山峰(尽管袋鼠本身不见得愿意那么做)。

遗传算法是这样做的:有一大群袋鼠,有的跳跃能力强,喜欢往高处,有的跳跃能力弱,喜欢在低处。有一天它们被莫名其妙的零散地扔到喜马拉雅山脉,在那里艰苦的生活繁衍下去。海拔低的地方弥漫着一种无色无味的毒气,海拔越高毒气越稀薄。可怜的袋鼠们并不知道毒气的存在,还是活蹦乱跳。于是,不断有不善跳跃的袋鼠死于海拔较低的地方,而在海拔越高的善于跳跃的袋鼠活得越久,也越有机会生儿育女,把善于跳跃的基因传给后代。就这样经过许多年繁衍生息,这些袋鼠们渐渐聚拢到了一个个的山峰上。最终,只有最高的珠穆朗玛峰上的袋鼠被带回了美丽的澳洲。

术语介绍:

  1. 染色体(Chromosome):染色体又可称为基因型个体(individuals),一定数量的个体组成了群体(population),群体中个体的数量叫做群体大小(population size)。
  2. 位串(Bit String):其实就是遗传学中的染色体在计算机中的表示。
  3. 基因(Gene):基因是染色体中的元素,用于表示个体的特征。例如有一个二进制串(即染色体)S=1011,则其中的1,0,1,1这4个元素分别称为基因。
  4. 特征值( Feature):在用串表示整数时,基因的特征值与二进制数的权一致;例如在串 S=1011 中,基因位置3中的1,它的基因特征值为2;基因位置1中的1,它的基因特征值为8。
  5. 适应度(Fitness):各个个体对环境的适应程度叫做适应度(fitness)。为了体现染色体的适应能力,引入了对问题中的每一个染色体都能进行度量的函数,叫适应度函数。这个函数通常会被用来计算个体在群体中的优良等级。
  6. 基因型(Genotype):或称遗传型,是指基因组定义遗传特征和表现。对应于位串。
  7. 表现型(Phenotype):生物体的基因型在特定环境下的表现特征。对应于位串解码后的参数。

2 算法步骤

  1. 染色体编码,寻找一种对问题潜在解进行“数字化”编码的方案,建立表现型和基因型的映射关系。(建立袋鼠跳跃能力与基因的映射关系)
  2. 初始化种群(刚开始袋鼠们被零散地扔到喜马拉雅山脉)
  3. 用适应度函数对每一个个体进行适应度评估(袋鼠跳得越高毒气越稀薄,相当于适应度越大)
  4. 用选择算子按照某种规定择优选择(低处的袋鼠很快被毒死,也就是被淘汰掉,以保证袋鼠总体数目持平)
  5. 让个体基因变异,保持种群多样性。(让袋鼠随机地跳一跳,说不定就刚好跳到了珠穆朗玛峰附近呢)
  6. 然后产生子代(希望存活下来的袋鼠是善于跳向高处的,并生儿育女,把善于跳跃的基因传给后代)
  7. 达到迭代次数或最小误差,算法终止,否则转向步骤3.

3 第一个简单的例子(python实现)

跟着B站一位博主的学习视频敲下了我的第一个遗传算法
视频链接

题目:在一个长度为n的数组nums中选择10个元素,使得10个元素的和与原数组的所有元素之和的1/10无限接近。
比如n=50,sum(nums)=1000,选择的元素列表answer要满足sum(answer)-100的绝对值小于e,e要尽可能的小。

思路:

  1. 创建包含100个解的随机初始解集(用random.sample(list,number)从list中随机抽取number个元素)
  2. 对解集中每两个解(父体与母体)进行选择交换,问题:如何选择这两个解?那就是选择优秀的交换,用轮盘赌选择法
    每个解都对应有一个误差和一个适应度,误差越小的解适应度越大(反比例函数)。
    这里的适应度=1/误差。
    归一化,将每个解的适应度除以所有解的适应度之和,归一化后得到选择概率。
    叠加化 a1=a1,a2=a1+a2,a3=a1+a2+a3…,叠加之后每个解的选择概率从0-1依次增长,得到累积概率。
    在0-1中随机选取一个浮点数(如0.4),从选择概率中挑出一个最接近的。
  3. 选择一部分进行交叉重组。
  4. 随机变异,保持种群多样性。
import random#1.创建初始解集def create_answer(numbers_set,n):    result=[]#存放解集的列表    for i in range(n):#循环n次,每次创建一个解集(包含10个元素)        result.append(random.sample(numbers_set,10))#从初始数组中随机抽取10个元素    return result#2.选择两个解#计算误差def error_level(new_answer,numbers_set):    error = []#存放适应度的列表    right_answer = sum(numbers_set)/10#正确答案,也就是原数组所有元素之和的1/10    for item in new_answer:        value = abs(right_answer-sum(item))#误差等于每个解与正确答案之差的绝对值        if value==0:#误差最小是0.1            error.append(10)#????        else:            error.append(1/value)#用反比例函数计算适应度    return error#选择两个解def choice_selected(old_answer,numbers_set):    result=[]    error = error_level(old_answer,numbers_set)#调用计算误差函数    error_one = [item/sum(error) for item in error]#归一化,列表每个元素除以列表总体元素之和,选择概率error_one    for i in range(1,len(error_one)):#叠加化        error_one[i] += error_one[i-1]    for i in range(len(old_answer)//2):#整体选两波        temp = []#存放父体母体的列表        for j in range(2):#一波选两个            rand = random.uniform(0,1)#从0-1中随机选择一个浮点数            for k in range(len(error_one)):#遍历寻找最接近的答案                if k==0:                    if rand<error_one[k]:#如果该浮点数小于第一个数,选择出来放到temp中                        temp.append(old_answer[k])                else:                    if rand>=error_one[k-1] and rand<error_one[k]:#如果该浮点数处在两个数中间,将更大的选择出来放到temp中                        temp.append(old_answer[k])        #3.交叉(交换信息)?????        rand = random.randint(0,6)        temp_1 = temp[0][:rand]+temp[1][rand:rand+3]+temp[0][rand+3:]#新子体temp1        temp_2 = temp[1][:rand]+temp[0][rand:rand+3]+temp[1][rand+3:]#新子体temp2        result.append(temp_1)        result.append(temp_2)    return result#4.随机变异def variation(old_answer,numbers_set,pro):    for i in range(len(old_answer)):        rand = random.uniform(0,1)        if rand<pro:#如果该随机浮点数小于0.1,就发生变异            rand_num = random.randint(0,9)#从该解中随便挑出一个元素,发生变异            old_answer[i] = old_answer[i][:rand_num]+random.sample(numbers_set,1)+old_answer[i][rand_num+1:]    return old_answernumbers_set = random.sample(range(0,1000),50)#从0-1000随机抽取50个元素,创建初始nums数组middle_answer = create_answer(numbers_set,100)#创建包含100个解的随机初始解集,每个解都是随机的10个元素first_answer = middle_answer[0]#随便找个原始解great_answer = []#最优解集for i in range(1000):#训练1000次    middle_answer = choice_selected(middle_answer,numbers_set)#选择交叉完的middle    middle_answer = variation(middle_answer,numbers_set,0.1)#变异完的middle    error = error_level(middle_answer,numbers_set)#生成适应度列表    index = error.index(max(error))#挑出该群体中适应度最大的下标    great_answer.append([middle_answer[index],error[index]])great_answer.sort(key=lambda x:x[1],reverse=True)#从大到小排序print('正确答案为',sum(numbers_set)/10)print('原始解为',sum(first_answer))print('最优解为',great_answer[0][0])print('最优解的和为',sum(great_answer[0][0]))print('选择系数为',great_answer[0][1])

这里迭代了1000次,可以看到随机初始化得到的原始解与正确答案相差4869-2554.9,经过1000次迭代后,得到的最优解2555与正确答案只相差0.1。

正确答案为 2554.9原始解为 4869最优解为 [87, 451, 249, 249, 205, 258, 285, 0, 133, 638]最优解的和为 2555选择系数为 10.000000000009095

4 二元函数例子(python实现)

吾等菜鸡,皆需代码之实践
问题:求下列函数的最大值和最小值,定义域为 x ∈ [ − 3 , 3 ] , y ∈ [ − 3 , 3 ] x∈[−3,3],y∈[−3,3] x[3,3],y[3,3]
F(x,y)=3(1−x ) 2 ∗ e ( − ( x 2 ) − ( y + 1 ) 2 ) −10( x 5 − x 3 − y 5 ) e ( − x 2 − y 2 ) − 1 3 e ( − ( x + 1 ) 2 − y 2 ) F(x,y)=3(1-x)^2*e^{(-(x^2)-(y+1)^2)}- 10(\frac{x}{5} - x^3 - y^5)e^{(-x^2-y^2)}- \frac{1}{3^{e^{(-(x+1)^2 - y^2)}}} F(x,y)=3(1x)2e((x2)(y+1)2)10(5xx3y5)e(x2y2)3e((x+1)2y2)1
这么复杂的函数…拿GA解最适合不过了,开干!
该函数图像如下:
在这里插入图片描述
很直观的可以看到,最大值是当x ≈ 0 , y ≈ 1.5 时,那个深红色的尖尖,最小值是当x ≈ 0.2 , y ≈ -1.7 时,蓝色的尖尖,这两个就是全局最优解。另外两个小山包是极大值,是局部最优解,我们的目的就是求得那两个全局最优解,避免陷在局部最优解里。

先计算最大值。首先生成200个随机的(x,y)对,将(x, y)坐标对带入要求解的函数F(x,y)中,根据适者生存,我们定义使得函数值F(x,y)越大的(x,y)对越适合环境,从而这些适应环境的(x,y)对被保留下来的概率越大,而那些不适应该环境的(x,y)则有很大概率被淘汰,保留下来的点经过繁殖产生新的点,如此进化下去最后留下的大部分点都是适应环境的点,即在最高点附近。

最小值的计算过程同上,区别在于函数值F(x,y)越小的(x,y)对越适合环境。

import numpy as npimport matplotlib.pyplot as pltfrom matplotlib import cmfrom mpl_toolkits.mplot3d import Axes3DDNA_SIZE = 24POP_SIZE = 200CROSSOVER_RATE = 0.8MUTATION_RATE = 0.005N_GENERATIONS = 50X_BOUND = [-3, 3]Y_BOUND = [-3, 3]def F(x, y):return 3*(1-x)**2*np.exp(-(x**2)-(y+1)**2)- 10*(x/5 - x**3 - y**5)*np.exp(-x**2-y**2)- 1/3**np.exp(-(x+1)**2 - y**2)def plot_3d(ax):X = np.linspace(*X_BOUND, 100)Y = np.linspace(*Y_BOUND, 100)X,Y = np.meshgrid(X, Y)Z = F(X, Y)ax.plot_surface(X,Y,Z,rstride=1,cstride=1,cmap=cm.coolwarm)ax.set_zlim(-10,10)ax.set_xlabel('x')ax.set_ylabel('y')ax.set_zlabel('z')plt.pause(3)plt.show()def get_fitness(pop):     x,y = translateDNA(pop)pred = F(x, y)return (pred - np.min(pred)) + 1e-3 #减去最小的适应度是为了防止适应度出现负数,通过这一步fitness的范围为[0, np.max(pred)-np.min(pred)],最后在加上一个很小的数防止出现为0的适应度def translateDNA(pop): #pop表示种群矩阵,一行表示一个二进制编码表示的DNA,矩阵的行数为种群数目x_pop = pop[:,1::2]#奇数列表示Xy_pop = pop[:,::2] #偶数列表示y#pop:(POP_SIZE,DNA_SIZE)*(DNA_SIZE,1) --> (POP_SIZE,1)x = x_pop.dot(2**np.arange(DNA_SIZE)[::-1])/float(2**DNA_SIZE-1)*(X_BOUND[1]-X_BOUND[0])+X_BOUND[0]y = y_pop.dot(2**np.arange(DNA_SIZE)[::-1])/float(2**DNA_SIZE-1)*(Y_BOUND[1]-Y_BOUND[0])+Y_BOUND[0]return x,ydef crossover_and_mutation(pop, CROSSOVER_RATE = 0.8):new_pop = []for father in pop:#遍历种群中的每一个个体,将该个体作为父亲child = father#孩子先得到父亲的全部基因(这里我把一串二进制串的那些0,1称为基因)if np.random.rand() < CROSSOVER_RATE:#产生子代时不是必然发生交叉,而是以一定的概率发生交叉mother = pop[np.random.randint(POP_SIZE)]#再种群中选择另一个个体,并将该个体作为母亲cross_points = np.random.randint(low=0, high=DNA_SIZE*2)#随机产生交叉的点child[cross_points:] = mother[cross_points:]#孩子得到位于交叉点后的母亲的基因mutation(child)#每个后代有一定的机率发生变异new_pop.append(child)return new_popdef mutation(child, MUTATION_RATE=0.003):if np.random.rand() < MUTATION_RATE: #以MUTATION_RATE的概率进行变异mutate_point = np.random.randint(0, DNA_SIZE*2)#随机产生一个实数,代表要变异基因的位置child[mutate_point] = child[mutate_point]^1 #将变异点的二进制为反转def select(pop, fitness):    # nature selection wrt pop's fitness    idx = np.random.choice(np.arange(POP_SIZE), size=POP_SIZE, replace=True,                           p=(fitness)/(fitness.sum()) )    return pop[idx]def print_info(pop):fitness = get_fitness(pop)max_fitness_index = np.argmax(fitness)print("max_fitness:", fitness[max_fitness_index])x,y = translateDNA(pop)print("最优的基因型:", pop[max_fitness_index])print("(x, y):", (x[max_fitness_index], y[max_fitness_index]))if __name__ == "__main__":fig = plt.figure()ax = Axes3D(fig)plt.ion()#将画图模式改为交互模式,程序遇到plt.show不会暂停,而是继续执行plot_3d(ax)pop = np.random.randint(2, size=(POP_SIZE, DNA_SIZE*2)) #matrix (POP_SIZE, DNA_SIZE)for _ in range(N_GENERATIONS):#迭代N代x,y = translateDNA(pop)if 'sca' in locals(): sca.remove()sca = ax.scatter(x, y, F(x,y), c='black', marker='o');plt.show();plt.pause(0.1)pop = np.array(crossover_and_mutation(pop, CROSSOVER_RATE))#F_values = F(translateDNA(pop)[0], translateDNA(pop)[1])#x, y --> Z matrixfitness = get_fitness(pop)pop = select(pop, fitness) #选择生成新的种群print_info(pop)plt.ioff()plot_3d(ax)

算法的运行过程如下,可以看到随着迭代的进行,散落在各地的解渐渐向最高处聚集:
在这里插入图片描述

运行结果:

max_fitness: 0.10333042920383484最优的基因型: [1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 1 0 1 1 0 1 1 1 0 1 1 0 1 0 0 1](x, y): (0.04820019294024647, 1.571304832178642)

5 算法进阶

10种选择策略思想
10种交叉策略思想
自适应的交叉和变异概率

来源地址:https://blog.csdn.net/weixin_46838605/article/details/123272869

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

遗传算法(Genetic Algorithm,GA)

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

遗传算法(python版)

1、基本概念遗传算法(GA)是最早由美国Holland教授提出的一种基于自然界的“适者生存,优胜劣汰”基本法则的智能搜索算法。该法则很好地诠释了生物进化的自然选择过程。遗传算法也是借鉴该基本法则,通过基于种群的思想,将问题的解通过编码的方式
2023-01-31

Python怎么实现遗传算法

这篇文章给大家分享的是有关Python怎么实现遗传算法的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。(一)问题遗传算法求解正方形拼图游戏(二)代码#!/usr/bin/env python# -*- coding
2023-06-21

matlab遗传算法怎么实现

要实现遗传算法(Genetic Algorithm)的MATLAB代码,可以按照以下步骤进行:初始化种群:生成包含若干个个体(染色体)的初始种群,每个个体都是一个基因序列,一般用二进制编码表示。适应度评价:根据问题的具体情况,定义适应度函数
2023-10-22

遗传算法集装箱优化算法Django+Th

自学编程一年多了,结合自己在供应链工作的经验做的,希望大家喜欢,本人QQ 394601344,有兴趣可以加我私聊,谢谢。前端Web用的Three.js,BootStrap ,后端用的Django,用的遗传算法。遗传算法:其实弄明白了也就那么
2023-01-31

Python优化算法之遗传算法案例代码

优化算法,尤其是启发式的仿生智能算法在最近很火,它适用于解决管理学,运筹学,统计学里面的一些优化问题,这篇文章主要介绍了Python优化算法—遗传算法,需要的朋友可以参考下
2023-02-18

遗传算法详解及其MATLAB实现

遗传算法是一种用于优化问题的启发式搜索算法,它模拟自然界中的进化过程,通过遗传、交叉和变异等操作寻找问题的最优解。遗传算法的核心思想是通过不断的迭代,通过对候选解的适应度评估和选择,不断优化候选解的质量。遗传算法的基本步骤包括:1. 初始化
2023-09-14

如何使用Python实现遗传算法

本篇内容介绍了“如何使用Python实现遗传算法”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!遗传算法是模仿自然界生物进化机制发展起来的随机
2023-07-05

Python 遗传算法处理TSP问题详解

遗传算法(Genetic Algorithm, GA)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法
2022-11-13

python如何实现高效的遗传算法

小编给大家分享一下python如何实现高效的遗传算法,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!遗传算法属于一种优化算法。如果你有一个待优化函数,可以考虑次算法
2023-06-14

C#中怎么实现一个遗传算法

这篇文章给大家介绍C#中怎么实现一个遗传算法,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。C#遗传算法实现代码:using System; using System.Collections.Generic; usi
2023-06-17

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录