我的编程空间,编程开发者的网络收藏夹
学习永远不晚

numpy矩阵乘法中的multiply,matmul和dot的使用

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

numpy矩阵乘法中的multiply,matmul和dot的使用

用numpy做矩阵运算时,少不了用到矩阵乘法。本文帮你迅速区分multiply, matmul和dot的区别。

numpy官方文档中的说明:(想深入了解可以一戳)

multiply: https://docs.scipy.org/doc/numpy/reference/generated/numpy.multiply.html

dot: https://docs.scipy.org/doc/numpy/reference/generated/numpy.dot.html

matmul:https://docs.scipy.org/doc/numpy/reference/generated/numpy.matmul.html

1. multiply(矩阵点乘)

先说说更简单的multiply,如果两个维度完全一样的矩阵用multiply做乘法,那么它们只是进行对应位置元素之间的乘法,得到一个同样维度的矩阵输出。这就是所谓的element-wise product。

import numpy as np
a = np.array([[0,1,2], [1,2,3], [3,4,5]])
b = np.array([[1,1,2], [2,2,1], [1,1,2]])
print(np.multiply(a, b))

输出:

array([[ 0, 1, 4], [ 2, 4, 3], [ 3, 4, 10]])

看这个栗子,应该十分好理解multiply。但是,如果你认为multiply只能对同样维度的矩阵之间相乘,那你就 t/o-o\ simple了。

如果3x3的矩阵和3x1的矩阵用multiply相乘会怎样呢?继续看栗子:

import numpy as np
a = np.array([[0, 1, 2], [1, 2, 3], [3, 4, 5]])
b = np.array([1, 2, 3])
print(np.multiply(a, b))

输出:

array([[ 0,  2,  6],
       [ 1,  4,  9],
       [ 3,  8, 15]])

相当于用b依次乘以a的每一行。记住,multiply是满足交换律的。(a和b互换位置结果不变)

对于3x3的矩阵a,可以用3x1的矩阵与它相乘,也可以用1x3的矩阵与它相乘。还可以用它乘以一个常数:

import numpy as np
a = np.array([[0, 1, 2], [1, 2, 3], [3, 4, 5]])
print(np.multiply(a, 3))

相当于a中各个元素乘以3。

2. dot(矩阵叉乘)

dot就是矩阵叉乘,MxN矩阵乘以NxC矩阵会得到一个MxC的矩阵。对于2D情况下的dot,等同于matmul,也等同于运算符@。

用一张图很好解释:

>>> a = [[1, 0], [0, 1]]
>>> b = [[4, 1], [2, 2]]
>>> np.dot(a, b)
array([[4, 1],
       [2, 2]])
>>> a@b
array([[4, 1],
       [2, 2]])

3. matmul

matmul不支持标量乘法,在2D矩阵乘法中,其效果与dot一样。

在N维矩阵乘法中(N>=3),体现出与dot不一样的算法。

>>> a = np.ones([9, 5, 7, 4])
>>> c = np.ones([9, 5, 4, 3])
>>> np.dot(a, c).shape
(9, 5, 7, 9, 5, 3)
>>> np.matmul(a, c).shape
(9, 5, 7, 3)
>>> # n is 7, k is 4, m is 3

总结

1. dot和multiply对于标量相乘,效果一样,而matmul不支持标量相乘:

>>>dot(3,3)
>>>9
>>>multiply(3,3)
>>>9
>>>matmul(3,3)
error!

2. 对于2D矩阵相乘,dot和matmul效果一样, 并且这俩都不满足交换律。通常建议优先使用matmul:

from numpy import *
a = arange(9).reshape(3,3)
b = arange(3).reshape(1,3)
 
print(dot(b,a))
print(matmul(b,a))

输出:

[[15 18 21]]
[[15 18 21]]

到此这篇关于numpy矩阵乘法中的multiply,matmul和dot的使用的文章就介绍到这了,更多相关numpy矩阵乘法中的multiply,matmul和dot内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

numpy矩阵乘法中的multiply,matmul和dot的使用

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

numpy矩阵乘法中的multiply,matmul和dot的使用

本文主要介绍了numpy矩阵乘法中的multiply,matmul和dot的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
2023-02-15

python中使用numpy包的向量矩阵相乘np.dot和np.matmul实现

本文主要介绍了python中使用numpy包的向量矩阵相乘np.dot和np.matmul实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
2023-02-15

numpy中meshgrid和mgrid的区别和使用方法是什么

这篇文章主要介绍了numpy中meshgrid和mgrid的区别和使用方法是什么的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇numpy中meshgrid和mgrid的区别和使用方法是什么文章都会有所收获,下面
2023-07-05

python 中的 cupy 库中的 amax 和 max 函数在使用只有一列或只有一行的矩阵时是否会出错?

问题内容我尝试使用 cupy 进行 gpu 加速来实现用于机器学习和图像分类的 softmax 激活函数。我观察到,对于形状为 nx1 或 1xn 的数组,cupys max 函数会输出错误。然而,对于 nxa 的所有其他情况(其中 n
python 中的 cupy 库中的 amax 和 max 函数在使用只有一列或只有一行的矩阵时是否会出错?
2024-02-06

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录