我的编程空间,编程开发者的网络收藏夹
学习永远不晚

如何使用LeetCode二叉树

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

如何使用LeetCode二叉树

这篇文章主要讲解了“如何使用LeetCode二叉树”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“如何使用LeetCode二叉树”吧!

首先看看什么是树??。

如何使用LeetCode二叉树

如图,这种有节点的结构就是树。

树 是n(n>=0)个结点的有限集

其中:

  • 每个元素叫做 节点

  • 上一节是下一节的 父节点,比如1是2的父节点

  • 最上面的节点,也就是没有父节点的节点叫做 根节点,比如1

  • 同一个父节点的节点叫做 兄弟节点,比如2、3、4是兄弟节点

  • 没有子节点的节点叫做 叶子节点

二叉树

听名字还是比较好理解的,就是每个节点有两个分叉的树。但是又不要求一定有两个节点,只要小于等于2个节点就可以。

比如这种:

如何使用LeetCode二叉树

其中,可以看到绿色的树每个节点都有左右两个节点,这种二叉树就叫做 满二叉树。

还有一种二叉树叫做 完全二叉树。

完全二叉树:  对一颗具有n个结点的二叉树按层编号,如果编号为i(1<=i<=n)的结点与同样深度的满二叉树中编号为i的结点在二叉树中位置完全相同,则这棵二叉树称为完全二叉树。

啥意思呢,比如一个满二叉树,每个节点进行顺序编号,如果去了一些节点,编号不会变化,那么就是完全二叉树,比如:

如何使用LeetCode二叉树

这张图中,绿色树是满二叉树,当去掉7号节点,变成了黄色树。

这颗黄色树的序号相对于满二叉树的序号都能一一对应,所以这个黄色树就是完全二叉树。

如果去掉的是6号节点,变成红色树,这时候,红色树的节点就必须有所变化了,6消失后节点7必须变成节点6才正确。

所以这个红色树就不是完全二叉树,因为它相对于满二叉树序号有所改变,已经对应不上了。

算法&mdash;&mdash;平衡二叉树

说了这么多,该来个题练练手了。

输入一棵二叉树的根节点,判断该树是不是平衡二叉树。如果某二叉树中任意节点的左右子树的深度相差不超过1,那么它就是一棵平衡二叉树。

示例 1: 给定二叉树 [3,9,20,null,null,15,7]

  3  / \ 9  20   /  \  15   7

返回 true 。

解析

题目给出了平衡二叉树的概念,就是任意节点的左右子树相差不超过1,就是平衡二叉树。

那这个深度是啥呢?

深度就是根节点到当前节点经过的边个数

层数就是当前节点在第几层,跟节点为第一层,所以层数=深度+1

 1       深度 0 ,层数 1  / \ 2  3      深度 1 ,层数 2   /  \  4    5   深度 2 ,层数 3

解法1

首先容易想到的就是把每个节点的深度都算出来,然后进行左右节点比较就能得出是不是平衡二叉树。

那么节点的子树深度怎么计算呢?

递归。当子节点为空就返回,否则每次增加一个单位深度。

      private int depth(TreeNode root) {         if (root == null) return 0;         return Math.max(depth(root.left), depth(root.right)) + 1;     }

深度搞定了,这题就好解了,即遍历每个节点的左右深度,还是要 用到递归:

class Solution {     public boolean isBalanced(TreeNode root) {         if (root == null) return true;         return Math.abs(depth(root.left) - depth(root.right)) <= 1 && isBalanced(root.left) && isBalanced(root.right);     }      private int depth(TreeNode root) {         if (root == null) return 0;         return Math.max(depth(root.left), depth(root.right)) + 1;     } }

从根节点开始,计算每个左子树深度和右子树深度的差值,以及下面的每个节点的左子树和右子树深度,最终得出结果。

这种先处理节点,在处理左子树,再处理右子树 的遍历方式叫做 前序遍历或者先序遍历。

时间复杂度

假设节点总数为n,层数为x,二叉树为满二叉树。

时间复杂度计算可以通过 每层的时间复杂度 * 层数复杂度

每层的时间复杂度:

  • 第一层需要遍历n次,第二层需要遍历n-1次,第三层需要遍历n-3次,所以每层的时间复杂度为O(n)

层数复杂度:

  • 第一层为1个节点,第二层为2个节点,第三层为4个节点,第x层为2的x-1次方。

借助公式:

n >= 1+2+4+8+...+2^(x-2)+1 n <= 1+2+4+8+...+2^(L-2)+2^(L-1)

计算:

n >= 1+2+4+8+...+2^(x-2)+1 n >= (2^(x-1)-1) + 1  n >= 2^(x-1) x <= log2n+1

同理:

x >= log2(n+1)

所以一个接近平衡二叉树的高度(层数)接近logn。

所以总的时间复杂度就是 O(nlogn)

空间复杂度

由于用到了递归,用到了堆栈帧,之前说过和最大递归深度成正比,所以空间复杂度为O(n)

解法2

还有没有更好的解呢?

刚才我们用到的是先序遍历,但是可以发现,每个节点都会计算一遍深度,会有大量重复计算,所以我们可以试试不重复的算法?比如直接后序遍历。

后序遍历:对于任意节点来说,先处理左子树,再处理右子树,最后再处理节点本身。

计算深度还是用到刚才的方法:

private int depth(TreeNode root) {       if (root == null) return 0;       int left = recur(root.left);       int right = recur(root.right);       return Math.max(left, right) + 1;   }

如果能计算左子树深度和右子树深度,那么我们可以直接进行比较,如果发现某个节点的左子树深度和右子树深度相差大于1,那么就可以直接返回false了。

所以综合能得出解法二:

class Solution {     public boolean isBalanced(TreeNode root) {         return recur(root) != -1;     }      private int recur(TreeNode root) {         if (root == null) return 0;         int left = recur(root.left);         if(left == -1) return -1;         int right = recur(root.right);         if(right == -1) return -1;         return Math.abs(left - right) < 2 ? Math.max(left, right) + 1 : -1;     } }

时间复杂度

n为总节点,遍历所有节点,所以时间复杂度为O(n)

空间复杂度

O(n)

感谢各位的阅读,以上就是“如何使用LeetCode二叉树”的内容了,经过本文的学习后,相信大家对如何使用LeetCode二叉树这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是编程网,小编将为大家推送更多相关知识点的文章,欢迎关注!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

如何使用LeetCode二叉树

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

C++使用LeetCode实现独一无二的二叉搜索树

这篇文章主要介绍C++使用LeetCode实现独一无二的二叉搜索树,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完![LeetCode] 96. Unique Binary Search Trees 独一无二的二叉搜索树
2023-06-20

C++二叉搜索树BSTree如何使用

这篇文章主要介绍“C++二叉搜索树BSTree如何使用”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“C++二叉搜索树BSTree如何使用”文章能帮助大家解决问题。一、概念二叉搜索树又称二叉排序树,它
2023-07-05

如何使用Java的平衡二叉树

这篇文章主要讲解了“如何使用Java的平衡二叉树”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“如何使用Java的平衡二叉树”吧!二叉排序树可能的问题给定一个数列{1,2,3,4,5,6},要
2023-06-15

C++如何实现LeetCode之复原二叉搜索树

这篇文章给大家分享的是有关C++如何实现LeetCode之复原二叉搜索树的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。[LeetCode] 99. Recover Binary Search Tree 复原二叉搜
2023-06-20

如何使用python实现二叉排序树

小编给大家分享一下如何使用python实现二叉排序树,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!方法一(粗暴)#二叉排序树class BTree(): def __init__(self,data):
2023-06-26

C++使用LeetCode实现二叉搜索树的示例分析

这篇文章将为大家详细讲解有关C++使用LeetCode实现二叉搜索树的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。Given an integer n, generate all structu
2023-06-20

C++如何合并二叉树

这篇文章主要介绍了C++如何合并二叉树,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。前言给定两个二叉树,想象当你将它们中的一个覆盖到另一个上时,两个二叉树的一些节点便会重叠。
2023-06-20

如何在Java中使用递归遍历二叉树?(Java中如何实现递归遍历二叉树?)

递归遍历二叉树是Java中高效的遍历方法,可访问所有节点并保持树的层次结构。前序、中序和后序遍历是三种不同类型的递归遍历,具有各自的访问顺序。递归遍历的特点包括代码简洁性、易于实现和O(n)的时间复杂度,但需要栈空间且代码复用性较差。递归遍历适用于需要全面或部分遍历树的情况,特别是需要处理树的层级结构时。
如何在Java中使用递归遍历二叉树?(Java中如何实现递归遍历二叉树?)
2024-04-02

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录