Kafka的使用与特性怎么理解
这篇文章主要讲解了“Kafka的使用与特性怎么理解”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Kafka的使用与特性怎么理解”吧!
1、面试官:可以简述下Kafka架构中比较重要的关键字吗?
比如Partition,Broker,你都是怎么理解的?
问题分析:Kafka基础知识考察,因为Kafka出色的性能,在集群结构上也有所不同,一些新的概念设计名字初学者可能搞不懂,构建一个 Kafka cluster 首先需要理解 topics, producers, consumers, and brokers 的概念。
答:关于Kafka我做了一些深入了解,它的设计思路还是很值得借鉴的,这其中有6个比较关键的名字概念,弄懂这几个概念才能更好地了解Kafka的工作机制。
Producer
消息的生产方,如支付系统确认用户已经支付,支付系统要通知订单系统和物流系统,支付系统就是生产者。
Consumer
消费的接收方,Producer 的案例中,物流系统就是消费方,前两个都比较简单,我就不多说了。
Topic
每条发布到MQ集群的消息都有一个类别,这个类别被称为topic,可以理解成一类消息的名字。所有的消息都已topic作为单位进行归类。
Partition
Kafka 物理上分区的概念,每个 Topic 会分散在一个或多个 Partition。一个 Topic 的数据太大了,就分成小片,Kafka 为分区引入多副本模型,副本之间采用“一个leader多follower”的设计,通过多副本实现故障自动转移,保证可用性。
Broker:
可以理解成一个服务器的节点,集群包含一个或多个服务器,这种服务器被称为 broker。对应用来说,生产者把消费发出去了,就不管了。消费者慢条斯理地按照自己的速率来消费。这段时间可能有大量消息产生,消费者压力还是在一定范围内。做生产者和消费者之间解耦的就是一个缓存服务broker。
Kafka Cluster
集群就是 Broker 的集合,多个 Broker 组成一个高可用集群。
Producer 与 Consumer的关系
topic 和 Partition 的关系
一个 topic 可以分别存储到多个 Partition,每个 Partition 有序的。
到这里面试官并没有打断我… 我就继续了。
那我们为什么要选择 Kafka 呢?
这里不再列举同类产品都具有的功能,直接总结干货,Kafka 特有的功能:
相比同类中间件 RabbitMQ or ActiveMQ,Kafka 支持批量拉取消息,大大增加了Kafka的消息吞吐量。
支持多种发送场景:
发送并忘记。
同步发送 。
异步发送+回调函数。
3种方式虽然在时间上有所差别,但并不是说时间越快的越好,具体使用哪种方式要看具体的业务场景,比如业务要求消息必须是按顺序发送,可以使用第2种同步发送,并且只能在一个partation上。如果业务只关心消息的吞吐量,容许少量消息发送失败,也不关注消息的发送顺序,那么可以使用发送并忘记的方式。如果业务需要知道消息发送是否成功,并且对消息的顺序不关心,那么可以用异步+回调的方式来发送消息
分布式可高可扩展。Kafka 集群可以透明的扩展,增加新的服务器进集群。
只说了 Kafka 的优势,那别的同类产品就不好了吗?当然不是,存在即真理,每个产品能生存下来,一定有它自己的优势,比如 RabbitMQ,在吞吐量方面稍逊于 Kafka ,但是他们的出发点不一样,RabbitMQ 支持对消息的可靠的传递,支持事务,不支持批量的操作,技术选型中,选择最适合你的,你最了解熟悉的。
分布式 | 高性能 | 持久性和扩展性 |
---|---|---|
支持多分区 | 高吞吐量 | 数据可持久化 |
支持多副本 | 低延迟 | 容错性高 |
支持多订阅者 | 高并发 | 支持水平在线扩展 |
基于ZooKeeper调度 | 时间复杂度为O(1) | 消息分发自动平衡 |
言多必失,说了一堆 Kafka 相比其他产品有多好多快,终于成功给自己挖了一个坑。(?),顺着我的思路展开了问
2、面试官:那为什么Kafka的吞吐量远高于其他同类中间件?
问题分析:多年经验总结,面试中最吃亏的就是你把你不熟悉的东西写在简历上,还有就是你知道结果,不知其原理,源码没看过,好歹也要知道用了巧妙的设计。
答:Kafka 是一个高吞吐量分布式消息系统,并且提供了持久化。其高性能的有两个重要特点:
利用了磁盘连续读写性能远远高于随机读写的特点,内部采用消息的批量处理,zero-copy机制,数据的存储和获取是本地磁盘顺序批量操作,具有O(1)的复杂度,消息处理的效率很高。
并发,将一个topic拆分多个partition, kafka读写的单位是partition,因此,将一个topic拆分为多个partition可以提高吞吐量。但是,这里有个前提,就是不同partition需要位于不同的磁盘(可以在同一个机器)。如果多个partition位于同一个磁盘,那么意味着有多个进程同时对一个磁盘的多个文件进行读写,使得操作系统会对磁盘读写进行频繁调度,也就是破坏了磁盘读写的连续性。
在linkedlin的测试中,每台机器就加载了6个磁盘,并且不做ra,就是为了充分利用多磁盘并发读写,又保证每个磁盘连续读写的特性。
同一个topic会被分散到多个分片上,并行处理。
深入分析
Kafka 消息的生产与消费模型Demo
伪代码:使用KafKa客户端发送一条消息
public class MqProducer { private final Logger LOG = LoggerFactory.getLogger(MqProducer.class); @Resource private Producer payProducer; public void sendPayMsg(String msg) { try { LOG.debug("send msg:{}", msg); payProducer.send(msg);//发送出去一条消息。 } catch (MQException e) { LOG.error("mq消息异常 message:{}", msg, e); } }}
长什么样子?
即payProducer.send(msg)里的msg的值:
{"businessType":1,"cityId":10,"ctime":1567426767077,"dataKey":20190902,"logType":1,"phone":"13212341234","uid":12345678,"userType":1,"uuid":"32EA02C86D78863"}
无论消息长短,都可以看作一个json串,用 key-value的形式传递信息。
伪代码:接收一条消息
public class DemoConsumer { private static IConsumerProcessor consumer; public static void main(String[] args) throws Exception { Properties properties = new Properties(); properties.setProperty(ConsumerConstants.SubscribeGroup, "dache.risk.log.queue.v2"); // 创建topic对应的consumer对象(注意每次build调用会产生一个新的实例) consumer = KafkaClient.buildConsumerFactory(properties, "topic.xxx.xxx"); // 调用recvMessageWithParallel设置listener consumer.recvMessageWithParallel(String.class, new IMessageListener() { @Override public ConsumeStatus recvMessage(Message message, MessagetContext context) { //TODO:业务侧的消费逻辑代码 try { System.out.println("message=[" + message.getBody() + "] partition=" + message.getParttion()); } catch (Exception e) { e.printStackTrace(); } return ConsumeStatus.CONSUME_SUCCESS; } }); }}
附录:消息管理工具
如果你们刚刚搭建起Kafka集群,还没有完备的页面管理系统,你不妨了解一下这几款开源工具,给领导展示一下解决问题的能力。
为了简化开发者和服务工程师维护 Kafka 集群的工作,基于页面的管理工具必不可少。
常用 Kafka 开源管理工具:
Kafka Manager :由 yahoo 团队开发。
感谢各位的阅读,以上就是“Kafka的使用与特性怎么理解”的内容了,经过本文的学习后,相信大家对Kafka的使用与特性怎么理解这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是编程网,小编将为大家推送更多相关知识点的文章,欢迎关注!
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341