我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python OpenCV Canny边缘检测算法的原理实现详解

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python OpenCV Canny边缘检测算法的原理实现详解

Gaussian smoothing

总的来说,Canny边缘检测可以分为四个步骤:

由于边缘检测对噪声敏感,因此对图像应用高斯平滑以帮助减少噪声。
具体做法是,采用一个5*5的高斯平滑滤波器对图像进行滤波处理。

Computing the gradient magnitude and orientation

对平滑后的图像,在水平、垂直两个方向上使用Sobel算子(如下图)计算梯度大小,得到两个方向上的一阶导数Gx与Gy。

在得到两个方向上的梯度之后,对这两个向量求和,得到这一点处的梯度大小与方向。

采用四舍五入,将梯度方向确定为上下左右与四个对角线方向之一(45°的倍数)。

Non-maxima suppression

在得到梯度大小与方向之后,对图像进一步扫描,去除不构成边缘的不重要的像素信息,这里采用的方法是非极大值抑制——在每个像素处,检查像素是否在其梯度方向的邻域中是局部最大值,只保留局部最大值的梯度。

在上图中,点A位于边缘上。梯度方向与边缘方向垂直。为了确定要不要保留A点作为边缘,需要将A点处的梯度大小与B、C两点的梯度大小比较,如果A点的梯度大小不是局部最大,则将该点抑制。

因此,从结果上讲,NMS其实是将B、C两点抑制了,它们不会出现在结果中,因此这一步的效果是“thin edges”。

Hysteresis thresholding

定义上界与下界两个阈值,并规定:

  • 任何梯度强度大于上界的像素都是边;
  • 任何梯度强度小于下界的像素都不是边;
  • 任何梯度介于两个阈值之间的可能是边,此时考察它们的连通性,如果它们和第一种情况(确定是边缘的像素)相连接,就认为它们是边缘,否则认为它们不是边缘。

在上图中,A点在maxVal阈值之上,确定是边缘。C介于两个阈值之间,但与A相连,因此它也是边缘。B介于两个阈值之间,它所在的曲线上并没有任何像素点的梯度强度在maxVal之上,因此它不是边缘。

需要指出的是,上面四步操作之后得到的是strong edges。

OpenCV实现

OpenCV提供了cv.Canny()方法,该方法将输入的原始图像转换为边缘图像。

该方法的原型为:

cv.Canny(image, threshold1, threshold2[, edges[, apertureSize[, L2gradient]]]) -> 	edges
cv.Canny(dx, dy, threshold1, threshold2[, edges[, L2gradient]]) -> edges

image参数是array格式的输入图像。threshold1与threshold2分别是我们的下界阈值与上界阈值。apertureSize是用于查找图像梯度的Sobel核的大小,默认为3。L2gradient指定了求梯度幅值的公式,是一个布尔型变量,默认为False。当它为True时,使用L2,否则使用L1。

下面是具体代码:

def canny_detect(image_path, show=True):
    # 读取图像
    image = cv2.imread(image_path, 0)
    # 获取结果
    edges = cv2.Canny(image, 100, 200)
    if show:
        # 绘制原图
        plt.subplot(121)
        plt.imshow(image, cmap='gray')
        plt.title('Original Image')
        plt.xticks([])
        plt.yticks([])
        # 绘制边缘图
        plt.subplot(122)
        plt.imshow(edges, cmap='gray')
        plt.title('Edge Image')
        plt.xticks([])
        plt.yticks([])

        plt.show()
    return edges
canny_detect('images/2.jpeg')

效果:

到此这篇关于Python OpenCV Canny边缘检测算法的原理实现详解的文章就介绍到这了,更多相关Python OpenCV Canny边缘检测 内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python OpenCV Canny边缘检测算法的原理实现详解

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python OpenCV Canny边缘检测算法如何实现

本文小编为大家详细介绍“Python OpenCV Canny边缘检测算法如何实现”,内容详细,步骤清晰,细节处理妥当,希望这篇“Python OpenCV Canny边缘检测算法如何实现”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入
2023-07-02

Python中怎么实现Opencv cv2.Canny()边缘检测

这期内容当中小编将会给大家带来有关Python中怎么实现Opencv cv2.Canny()边缘检测,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。1. 效果图原始图 VS Canny检测效果图如下:2.
2023-06-20

Python+OpenCV实现边缘检测与角点检测详解

这篇文章主要为大家详细介绍了如何通过Python+OpenCV实现边缘检测与角点检测,文中的示例代码讲解详细,对我们学习Python与OpenCV有一定的帮助,需要的可以参考一下
2023-02-03

Python图像锐化与边缘检测之Scharr,Canny,LOG算子详解

图像锐化和边缘检测主要包括一阶微分锐化和二阶微分锐化,本文主要讲解常见的图像锐化和边缘检测方法,即Scharr算子、Canny算子和LOG算子,需要的可以参考一下
2022-12-21

Python图像处理之边缘检测原理详解

边缘检测是图像处理和计算机视觉当中的基本问题,边缘检测的目的是标识数字图像中亮度变化明显的点。本文将通过示例和大家介绍一下边缘检测的原理,希望对大家有所帮助
2022-12-08

Python中图像边缘检测算法如何实现

这篇“Python中图像边缘检测算法如何实现”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“Python中图像边缘检测算法如何
2023-06-30

详解Bagging算法的原理及Python实现

目录一、什么是集成学习二、Bagging算法三、Bagging用于分类四、Bagging用于回归一、什么是集成学习 集成学习是一种技术框架,它本身不是一个单独的机器学习算法,而是通过构建并结合多个机器学习器来完成学习任务,一般结构是:先产生
2022-06-02

t-SNE算法的原理和Python代码实现详解

T分布随机邻域嵌入(t-SNE),是一种用于可视化的无监督机器学习算法,使用非线性降维技术,根据数据点与特征的相似性,试图最小化高维和低维空间中这些条件概率(或相似性)之间的差异,以在低维空间中完美表示数据点。因此,t-SNE擅长在二维或三
t-SNE算法的原理和Python代码实现详解
2024-01-23

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录