我的编程空间,编程开发者的网络收藏夹
学习永远不晚

python如何获取tensor()数据类型中的值

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

python如何获取tensor()数据类型中的值

获取tensor()数据类型的值

一、问题

只想要216.8973那个数。

二、解决方法

1、单个tensor

tensor.item()

就可以得到216.8973。

2、多个tensor

tensor.tolist()

 

完美解决~

tensorflow笔记:tensor数据类型

常见的数据类型载体

  • list
  • np.array
  • tf.tensor
  • list: 可以存储不同数据类型,缺点不适合存储较大的数据,如图片
  • np.array: 解决同类型大数据数据的载体,方便数据运算,缺点是在深度学习之前就设计好的,不支持GPU
  • tf.tensor:更适合深度学习,支持GPU

Tensor是什么

  • scalar: 1.1
  • vector:[1.1] , [1.1,2.2,……]
  • matrix:[[1,2,3,],[4,5,6],[7,8,9]]
  • torsor:rank > 2 (一般指的是维度大于2的数据)

但是,在tensorflow里面我们把数据的数据都叫tensor

Tensor支持的类型

  • int, float, double
  • bool
  • string

创建不同类型的Tensor

import tensorflow as tf
# 创建一个整型的数据
tf.constant(1)
# Out[3]: <tf.Tensor: shape=(), dtype=int32, numpy=1>
# 注意因为这里的constant就是一个普通的tensor,不要理解为常量了(TF1.0是代表一个常量)

# 创建一个浮点类型的数据
tf.constant(1.)
# Out[4]: <tf.Tensor: shape=(), dtype=float32, numpy=1.0>

# 若给定一个浮点型的数据,但是指定为int类型会报错
tf.constant(2.2,dtype=tf.int32)
# TypeError: Cannot convert 2.2 to EagerTensor of dtype int32

# 给一数指定双精度
tf.constant(2.,dtype=tf.double)
# Out[6]: <tf.Tensor: shape=(), dtype=float64, numpy=2.0>

# 创建bool类型的数据
tf.constant([True,False])
# Out[7]: <tf.Tensor: shape=(2,), dtype=bool, numpy=array([ True, False])>

# 创建字符串型数据(很少用)
tf.constant("hello,world")
# Out[8]: <tf.Tensor: shape=(), dtype=string, numpy=b'hello,world'>

Tensor Property

下面开始介绍Tensor常用的属性

tf.device

import tensorflow as tf
with tf.device("cpu"):
    a = tf.constant([1])
with tf.device("gpu"):
    b = tf.range(6)

print(a.device)
print(b.device)
# 数据在CPU和GPU上的转换
aa = a.gpu()
print(aa.device)
bb = b.cpu()
print(bb.device)

输出结果:

/job:localhost/replica:0/task:0/device:CPU:0
/job:localhost/replica:0/task:0/device:GPU:0
/job:localhost/replica:0/task:0/device:GPU:0
/job:localhost/replica:0/task:0/device:CPU:0

转换为numpy

c = tf.range(10)
#Out[14]: <tf.Tensor: shape=(10,), dtype=int32, numpy=array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])>
c.numpy()
#Out[15]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) 

Tensor的维度与形状

d = tf.range(10)

d.shape
# Out[17]: TensorShape([10])

d.ndim
# Out[18]: 1

# 用rank查看tensor的维度(秩):返回的是一个tensor类型的数据
tf.rank(d)
# Out[19]: <tf.Tensor: shape=(), dtype=int32, numpy=1>
tf.rank(tf.ones([3,4,2]))
# Out[20]: <tf.Tensor: shape=(), dtype=int32, numpy=3>

# tf.name
# 是Tensorflow1.0中的概念,现在基本已经淘汰了

python中判断一个数据是不是Tensor

import numpy as np
import tensorflow as tf

a = tf.constant(1.)
b = tf.constant([True,False])
c = tf.constant("hello,world")
d = np.arange(4)

isinstance(a,tf.Tensor)
# Out[27]: True
tf.is_tensor(b)
# Out[28]: True
tf.is_tensor(d)
# Out[29]: False

a.dtype,b.dtype,c.dtype,d.dtype
# Out[32]: (tf.float32, tf.bool, tf.string, dtype('int32'))

a.dtype == tf.float32
Out[33]: True
c.dtype == tf.string
Out[34]: True

数据类型的转换

a = np.arange(5)
a.dtype
Out[36]: dtype('int32')
aa = tf.convert_to_tensor(a)  # numpy数据转化方法为.astype(np.int64)
# Out[38]: <tf.Tensor: shape=(5,), dtype=int32, numpy=array([0, 1, 2, 3, 4])>
aa = tf.convert_to_tensor(a, dtype=tf.float32)
# Out[40]: <tf.Tensor: shape=(5,), dtype=float32, numpy=array([0., 1., 2., 3., 4.], dtype=float32)>

# 用头tf.cast()数据转化
tf.cast(aa,dtype = tf.float32)
# Out[41]: <tf.Tensor: shape=(5,), dtype=float32, numpy=array([0., 1., 2., 3., 4.], dtype=float32)>
aaa = tf.cast(aa,dtype=tf.double)
# Out[43]: <tf.Tensor: shape=(5,), dtype=float64, numpy=array([0., 1., 2., 3., 4.])>
tf.cast(aaa,dtype=tf.int32)
# Out[44]: <tf.Tensor: shape=(5,), dtype=int32, numpy=array([0, 1, 2, 3, 4])>


# bool 与 int 的转化
b = tf.constant([0,1])
tf.cast(b,tf.bool)
# Out[46]: <tf.Tensor: shape=(2,), dtype=bool, numpy=array([False,  True])>
bb = tf.cast(b,dtype=tf.bool)
tf.cast(bb,tf.int32)
# Out[48]: <tf.Tensor: shape=(2,), dtype=int32, numpy=array([0, 1])>

tf.Variable

tf.Variable在tensorflow中相比tf.constan一样也是Tensor,tf.Variable特指Tensorflow中哪些可以优化的参数,比如自动求导。

tf.Variable可以理解为是专门为神经网络所设立的一个类型。

a = tf.range(5)
b = tf.Variable(a)
# Out[51]: <tf.Variable 'Variable:0' shape=(5,) dtype=int32, numpy=array([0, 1, 2, 3, 4])>
b.dtype
# Out[52]: tf.int32
b.name
# Out[53]: 'Variable:0'
b = tf.Variable(a, name = "input_data")
b.name
# Out[55]: 'input_data:0'
b.trainable
# Out[56]: True

isinstance(b,tf.Tensor)
# Out[57]: False
isinstance(b,tf.Variable)
# Out[58]: True
tf.is_tensor(b)
# Out[59]: True

b.numpy()
# Out[60]: array([0, 1, 2, 3, 4])

将Tensor类型转化为python中的数据类型

a = tf.ones([])
# Out[63]: <tf.Tensor: shape=(), dtype=float32, numpy=1.0>
a.numpy()
# Out[64]: 1.0
int(a)
# Out[65]: 1
float(a)
# Out[66]: 1.0

以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程网。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

python如何获取tensor()数据类型中的值

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

python怎么获取tensor()数据类型中的值

本篇内容介绍了“python怎么获取tensor()数据类型中的值”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!获取tensor()数据类型
2023-07-02

Python数据类型怎么获取

这篇文章主要介绍“Python数据类型怎么获取”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Python数据类型怎么获取”文章能帮助大家解决问题。内置数据类型在编程中,数据类型是一个重要的概念。变量
2023-07-05

关于torch中tensor数据类型的转换

这篇文章主要介绍了关于torch中tensor数据类型的转换方式,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
2022-11-16

python泛型如何获取传入的类型

Python中的泛型并不是强类型,因此无法直接获取传入的类型。 Python的类型注解主要是用来提供静态类型检查的,而在运行时并没有真正的类型信息。但是,你可以使用`typing`模块中的`Type`和`TypeVar`来实现类型参数的传
2023-10-27

如何在 Golang 中获取函数的类型?

在 golang 中,我们可以使用 reflect.typeof() 函数获取函数类型:获取函数类型:fntype := reflect.typeof(add)打印函数类型:fmt.println("函数类型:", fntype)获取函数名
如何在 Golang 中获取函数的类型?
2024-04-20

如何从redis获取多条数据类型

要从Redis获取多条数据类型,可以使用以下命令:1. GET:用于获取字符串类型的数据。可以使用单个GET命令来获取多个键的值。例如,GET key1 key2 key3。2. HGETALL:用于获取哈希类型的数据。可以使用HGETAL
2023-09-06

C++数据类型的取值范围

这篇文章主要介绍“C++数据类型的取值范围”,在日常操作中,相信很多人在C++数据类型的取值范围问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”C++数据类型的取值范围”的疑惑有所帮助!接下来,请跟着小编一起来
2023-06-17

qt如何获取QString中的数值

要获取 QString 中的数值,可以使用 QString 的 toInt()、toDouble()、toFloat() 等成员函数来将 QString 转换为相应的数值类型。示例代码如下:```cppQString str = "123"
2023-08-12

Python Django如何获取URL中的数据

小编给大家分享一下Python Django如何获取URL中的数据,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!Django获取URL中的数据URL中的参数一般有两种形式。如下所示:1. https://zy010101.
2023-06-25

Java中如何获取泛型类型信息

这篇文章主要讲解了“Java中如何获取泛型类型信息”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Java中如何获取泛型类型信息”吧!根据使用泛型位置的不同可以分为:声明侧泛型、使用侧泛型。声
2023-07-05

PHP中怎么获取字段数据类型

这篇文章给大家介绍PHP中怎么获取字段数据类型,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。mysql_field_type()函数可获得字段的数据类型,该函数的语法格式如下。string mysql_field_ty
2023-06-17

python数值类型如何使用

本篇内容介绍了“python数值类型如何使用”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!1、数值类型之间都是可以相互转化的,两种不同类型相
2023-06-30

python如何获取json中的某个值

在Python中,可以使用`json`模块来解析JSON字符串。可以通过将JSON字符串转换为字典或列表的形式,然后使用索引或键名来获取JSON中的特定值。以下是一个示例代码,展示了如何获取JSON中的某个值:```pythonimport
2023-09-04

python如何获取list中最大的值

您可以使用内置的 `max()` 函数来获取一个列表中的最大值。以下是一个示例:```pythonmy_list = [1, 2, 3, 4, 5]max_value = max(my_list)print(max_value) # 输出
2023-08-18

php中如何获取访问类的数据呢

这篇文章将为大家详细讲解有关php中如何获取访问类的数据呢,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。self是一种静态绑定,换言之就是当类进行编译的时候self已经明确绑定了类名,因此不论多少继承,也
2023-06-13

Python的type()函数:获取对象的类型

Python的type()函数:获取对象的类型,需要具体代码示例在Python中,我们经常需要知道一个对象的类型,以便在程序中进行相应的处理。Python提供了type()函数来获取对象的类型。本文将介绍type()函数的使用方法,并给出具
Python的type()函数:获取对象的类型
2023-11-18

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录