Numpy矩阵拼接
一、矩阵拼接
numpy矩阵拼接常用方法:
- np.append(arr,values,axis)
- np.concatenate(arrays,axis,out=None)
- np.stack(arrays,axis,out=None)
- np.hstack(tup)
- np.vstack(tup)
① np.append(arr,values,axis)
支持数组和数组或数组和数的拼接,不支持三个及以上数组的拼接
参数:
- arr:需要被添加values的数组
- values:添加到数组arr中的值
- axis:可选参数,默认值为None。
注:
1、如果axis没有给出,则默认axis=None,arr,values都将先展平成一维数组。
2、如果axis被指定了,那么arr和values需要同为一维数组或者有相同的shape,否则报错:ValueError: arrays must have same number of dimensions
3、axis的最大值为数组arr的维数-1,如arr维数等于1,axis最大值为0;arr维数等于2,axis最大值为1,以此类推。
4、当arr的维数为2(理解为单通道图),axis=0表示沿着行增长方向添加 values;axis=1表示沿着列增长方向添加values
5、当arr的维数为3(理解为多通道图),axis=0,axis=1时同上;axis=2表示沿着图像深度增长方向添加values
import numpy as npa = [[1,2,3,4]]b = 5c = [[5,6,7,8]]d = np.append(a,b) # 数组和数拼接,默认axis=Nonee = np.append(a,c) # 数组和数组拼接,默认axis=Nonef = np.append(a,c,axis=0) # 按行增长方向拼接(垂直拼接)g = np.append(a,c,axis=1) # 按列增长方向拼接(水平拼接) print(d)print(e)print(f)print(g)
输出:
② np.concatenate(arrays,axis,out=None)
功能与np.append()类似,但是支持多个数组的拼接。
参数:
- arrays:一个包含需要组合的数组的元组,这些数组需要满足的要求是:(1)维数相同(2)除axis指定维度外其余维度元素个数对应相等
- aixs:维度,指定数组组合的方向,默认为0,即垂直拼接
- out:可选参数,是一个多维数组,如果提供该参数,函数返回结果将会保存在out中,当然,out的shape需要与结果相等
import numpy as npa = [[1,2,3,4]]b = 5c = [[5,6,7,8]]d = np.concatenate((a,b),axis=None) # 数组和数展平成一维数组拼接e = np.concatenate((a,c)) # 数组和数组拼接,默认axis=0,按行增长方向拼接(垂直拼接)f = np.concatenate((a,c),axis=1) # 数组和数组拼接,按列增长方向拼接(水平拼接) print(d)print(e)print(f)
输出:
③ np.stack(arrays,axis,out=None)
同样支持多矩阵拼接,不同的是,stack会在指定轴方向上添加一个新的维度,axis默认值为0
参数:
- arrays:一个包含需要组合的数组的元组,这些数组需要满足的要求是:(1)维数相同(2)各维度元素个数对应相等(即形状相等)
- aixs:维度,指定数组增加哪个维度,以及组合的方向。axis默认值为0,默认增加零轴,并按照零轴方向组合。
- out:可选参数,是一个多维数组,如果提供该参数,函数返回结果将会保存在out中,当然,out的shape需要与结果相等
import numpy as npa = np.array([[1,2,3,4],[5,6,7,8],[9,10,11,12]])b = np.array([[13,14,15,16],[17,18,19,20],[21,22,23,24]])print(a.shape)print(b.shape)c = np.stack((a,b)) # 默认axis=0,数组和数组在0轴拼接,并在该纬度增加一维d = np.stack((a,b),axis=1) # axis=1,数组和数组在1轴拼接,并在该纬度增加一维e = np.stack((a,b),axis=2) # axis=2,数组和数组在2轴拼接,并在该纬度增加一维print(c, c.shape)print(d, d.shape)print(e, e.shape)
输出:
④ np.hstack(tup)
水平堆叠,对多维数组来说,水平堆叠相当于在第二个维度做concatenation
import numpy as npa = np.array([[1,2,3,4],[5,6,7,8],[9,10,11,12]])b = np.array([[13,14,15,16],[17,18,19,20],[21,22,23,24]])c = np.hstack((a,b))print(a, a.shape)print(b, b.shape)print(c, c.shape)
输出:
⑤ np.vstack(tup)
垂直堆叠,对多维数组来说,垂直堆叠相当于在第一个维度做concatenation
import numpy as npa = np.array([[1,2,3,4],[5,6,7,8],[9,10,11,12]])b = np.array([[13,14,15,16],[17,18,19,20],[21,22,23,24]])c = np.vstack((a,b))print(a, a.shape)print(b, b.shape)print(c, c.shape)
输出:
来源地址:https://blog.csdn.net/weixin_44842318/article/details/129783803
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341