我的编程空间,编程开发者的网络收藏夹
学习永远不晚

C语言深入探究斐波那契数列

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

C语言深入探究斐波那契数列

本文章参考leetcode斐波那契数官方题解

斐波那契的边界条件是 F(0)=0 和 F(1)=1。当 n>1 时,每一项的和都等于前两项的和,因此有如下递推关系:F(n)=F(n-1)+F(n-2)

一、递归思想

递归的思想是把一个大型复杂问题层层转化为一个与原问题规模更小的问题,问题被拆解成子问题后,递归调用继续进行,直到子问题无需进一步递归就可以解决的地步为止。

#include<stdio.h>
int fib(int n)
{
    return n > 2 ? n : fib(n - 1) + fib(n - 2);
}
int main()
{
    int n;
    scanf("%d", &n);
    printf("%d\n", fib(n));
    return 0;
}

其时间复杂度为O(2^N),由于其时间复杂度太高,在实际应用中用武之地并没有想象的那么多,要是真写个这种程序,老板应该是不容下你了。

二、空间换时间

动态开辟空间将计算出的数据记录下来,避免重复计算,使用空间换时间。

时间复杂度O(n),空间复杂度O(n)。

#include<stdio.h>
#include<stdlib.h>
long long fib(int n)
{
    long long* p = (long long*)malloc(sizeof(long long) * (n+1));
    p[0] = 0;
    p[1] = 1;
    for (int i = 2; i <= n; ++i)
    {
        p[i] = p[i - 1] + p[i - 2];
    }
    long long temp = p[n];
    free(p);
    p = NULL;
    return temp;
}
int main()
{
    int n;
    scanf("%d", &n);
    printf("%lld\n", fib(n));
    return 0;
}

这里使用动态开辟空间而不用数组,因为数组的大小有限制。

其缺点依然十分明显,其空间复杂度较高,开辟堆区内存,若管理不当,甚至可能造成内存泄漏。(避免因未释放堆区而造成内存泄漏的小技巧:(7条消息) C++11智能指针的解析_GG_Bond18的博客-CSDN博客

https://blog.csdn.net/GG_Bruse/article/details/124136480)

三、动态规划

本方法是在方法二的基础上节省空间。利用滚动数组思想,将空间复杂度由O(n)优化为O(1)。时间复杂度依然为O(n)。

#include<stdio.h>
long long fib(int n)
{
    if (n < 2)
    {
        return n;
    }
    long long left = 0, right = 1, ret = 1;
    for (int i = 2; i < n; ++i)
    {
        left = right;
        right = ret;
        ret = left + right;
    }
    return ret;
}
int main()
{
    int n;
    scanf("%d", &n);
    printf("%lld\n", fib(n));
    return 0;
}

基本掌握这个方法就可以了。

四、通项公式

#include<stdio.h>
#include<math.h>
int fib(int n)
{
    double sqrt5 = sqrt(5);
    double fibN = pow((1 + sqrt5) / 2, n) - pow((1 - sqrt5) / 2, n);
    return round(fibN / sqrt5);
}
int main()
{
    int n;
    scanf("%d", &n);
    printf("%d\n", fib(n));
    return 0;
}

代码中使用的pow函数的时空复杂度与 CPU 支持的指令集相关,该文章不深入分析。

五、矩阵快速幂

#include<stdio.h>
struct Matrix
{
    int mat[2][2];
};
struct Matrix matrixMultiply(struct Matrix* a, struct Matrix* b)
{
    struct Matrix c;
    for (int i = 0; i < 2; i++) {
        for (int j = 0; j < 2; j++) {
            c.mat[i][j] = (*a).mat[i][0] * (*b).mat[0][j] + (*a).mat[i][1] * (*b).mat[1][j];
        }
    }
    return c;
}
struct Matrix matrixPow(struct Matrix a, int n)
{
    struct Matrix ret;
    ret.mat[0][0] = ret.mat[1][1] = 1;
    ret.mat[0][1] = ret.mat[1][0] = 0;
    while (n > 0) {
        if (n & 1) {
            ret = matrixMultiply(&ret, &a);
        }
        n >>= 1;
        a = matrixMultiply(&a, &a);
    }
    return ret;
}
int fib(int n)
{
    if (n < 2)
    {
        return n;
    }
    struct Matrix q;
    q.mat[0][0] = q.mat[0][1] = q.mat[1][0] = 1;
    q.mat[1][1] = 0;
    struct Matrix res = matrixPow(q, n - 1);
    return res.mat[0][0];
}
int main()
{
    int n;
    scanf("%d", &n);
    printf("%d", fib(n));
    return 0;
}

时间复杂度为O(logn),空间复杂度为O(1)。

六、总结

方法一和方法二尽量不要使用。

到此这篇关于C语言深入探究斐波那契数列的文章就介绍到这了,更多相关C语言斐波那契数列内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

C语言深入探究斐波那契数列

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

C语言如何实现斐波那契数列

这篇文章主要介绍了C语言如何实现斐波那契数列的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇C语言如何实现斐波那契数列文章都会有所收获,下面我们一起来看看吧。C语言数据结构递归之斐波那契数列首先,关于递归深度,递
2023-06-17

c语言斐波那契数列算法怎么实现

斐波那契数列是指每个数都是前两个数之和的数列,即F(0) = 0,F(1) = 1,F(n) = F(n-1) + F(n-2)(n ≥ 2,n ∈ N*)。下面是一个使用迭代法实现斐波那契数列的C语言代码:#include int f
c语言斐波那契数列算法怎么实现
2023-10-30

C语言中斐波那契数列怎么实现

这篇文章主要介绍“C语言中斐波那契数列怎么实现”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“C语言中斐波那契数列怎么实现”文章能帮助大家解决问题。一、递归 一般来说递归实现的代码都要比循环要简
2023-06-28

Go语言怎么实现斐波那契数列

这篇文章主要介绍“ Go语言怎么实现斐波那契数列”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“ Go语言怎么实现斐波那契数列”文章能帮助大家解决问题。斐波那契数列以下实例通过 Go 语言的递归函数实
2023-06-19

用C语言求解第N项斐波那契数列问题

这篇文章主要介绍了用C语言求解第N项斐波那契数列问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
2022-11-13

Python/R语言如何分别实现斐波那契数列

这篇文章主要为大家展示了“Python/R语言如何分别实现斐波那契数列”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“Python/R语言如何分别实现斐波那契数列”这篇文章吧。1、年龄计算有 5
2023-06-29

C语言新手练习题之求第n个斐波那契数

斐波那契数列这一个大一上C语言就有的问题大家应该都不陌生,下面这篇文章主要给大家介绍了关于C语言新手练习题之求第n个斐波那契数的相关资料,文中通过图文以及实例代码介绍的非常详细,需要的朋友可以参考下
2022-11-13

C++ 函数递归详解:递归实现阶乘和斐波那契数列

递归是函数自我调用的编程技术,分为基线条件和递归调用。使用递归可以实现阶乘,即正整数乘以其所有较小正整数的乘积,和斐波那契数列,即每个数字是前两个数字总和的数列。C++ 函数递归详解:递归实现阶乘和斐波那契数列简介递归是一种编程技术,它
C++ 函数递归详解:递归实现阶乘和斐波那契数列
2024-05-02

深入探究C语言中的二叉树

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。本文将带你深入探究C语言中的二叉树,感兴趣的同学跟着小编一起学习吧
2023-05-19

C语言指针和数组深入探究使用方法

在C语言和C++等语言中,数组元素全为指针变量的数组称为指针数组,指针数组中的元素都必须具有相同的存储类型、指向相同数据类型的指针变量。指针数组比较适合用来指向若干个字符串,使字符串处理更加方便、灵活
2022-11-13

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录