python之基本形态学滤波实例分析
本文小编为大家详细介绍“python之基本形态学滤波实例分析”,内容详细,步骤清晰,细节处理妥当,希望这篇“python之基本形态学滤波实例分析”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。
引言
对图像进行形态学变换。变换对象一般为灰度图或二值图,功能函数放在morphology子模块内。
1、膨胀(dilation)
原理:一般对二值图像进行操作。找到像素值为1的点,将它的邻近像素点都设置成这个值。1值表示白,0值表示黑,因此膨胀操作可以扩大白色值范围,压缩黑色值范围。一般用来扩充边缘或填充小的孔洞。
功能函数:skimage.morphology.dilation(image, selem=None)
selem表示结构元素,用于设定局部区域的形状和大小。
from skimage import dataimport skimage.morphology as smimport matplotlib.pyplot as pltimg=data.checkerboard()dst1=sm.dilation(img,sm.square(5)) #用边长为5的正方形滤波器进行膨胀滤波dst2=sm.dilation(img,sm.square(15)) #用边长为15的正方形滤波器进行膨胀滤波plt.figure('morphology',figsize=(8,8))plt.subplot(131)plt.title('origin image')plt.imshow(img,plt.cm.gray)plt.subplot(132)plt.title('morphological image')plt.imshow(dst1,plt.cm.gray)plt.subplot(133)plt.title('morphological image')plt.imshow(dst2,plt.cm.gray)
分别用边长为5或15的正方形滤波器对棋盘图片进行膨胀操作,结果如下:
可见滤波器的大小,对操作结果的影响非常大。一般设置为奇数。
除了正方形的滤波器外,滤波器的形状还有一些,现列举如下:
morphology.square: 正方形
morphology.disk: 平面圆形
morphology.ball: 球形
morphology.cube: 立方体形
morphology.diamond: 钻石形
morphology.rectangle: 矩形
morphology.star: 星形
morphology.octagon: 八角形
morphology.octahedron: 八面体
注意,如果处理图像为二值图像(只有0和1两个值),则可以调用:
skimage.morphology.binary_dilation(image, selem=None)
用此函数比处理灰度图像要快。
2、腐蚀(erosion)
函数:skimage.morphology.erosion(image, selem=None)
selem表示结构元素,用于设定局部区域的形状和大小。
和膨胀相反的操作,将0值扩充到邻近像素。扩大黑色部分,减小白色部分。可用来提取骨干信息,去掉毛刺,去掉孤立的像素。
from skimage import dataimport skimage.morphology as smimport matplotlib.pyplot as pltimg=data.checkerboard()dst1=sm.erosion(img,sm.square(5)) #用边长为5的正方形滤波器进行膨胀滤波dst2=sm.erosion(img,sm.square(25)) #用边长为25的正方形滤波器进行膨胀滤波plt.figure('morphology',figsize=(8,8))plt.subplot(131)plt.title('origin image')plt.imshow(img,plt.cm.gray)plt.subplot(132)plt.title('morphological image')plt.imshow(dst1,plt.cm.gray)plt.subplot(133)plt.title('morphological image')plt.imshow(dst2,plt.cm.gray)
注意,如果处理图像为二值图像(只有0和1两个值),则可以调用:
skimage.morphology.binary_erosion(image, selem=None)
用此函数比处理灰度图像要快。
3、开运算(opening)
函数:skimage.morphology.openning(image, selem=None)
selem表示结构元素,用于设定局部区域的形状和大小。
先腐蚀再膨胀,可以消除小物体或小斑块。
from skimage import io,colorimport skimage.morphology as smimport matplotlib.pyplot as pltimg=color.rgb2gray(io.imread('d:/pic/mor.png'))dst=sm.opening(img,sm.disk(9)) #用边长为9的圆形滤波器进行膨胀滤波plt.figure('morphology',figsize=(8,8))plt.subplot(121)plt.title('origin image')plt.imshow(img,plt.cm.gray)plt.axis('off')plt.subplot(122)plt.title('morphological image')plt.imshow(dst,plt.cm.gray)plt.axis('off')
注意,如果处理图像为二值图像(只有0和1两个值),则可以调用:
skimage.morphology.binary_opening(image, selem=None)
用此函数比处理灰度图像要快。
4、闭运算(closing)
函数:skimage.morphology.closing(image, selem=None)
selem表示结构元素,用于设定局部区域的形状和大小。
先膨胀再腐蚀,可用来填充孔洞。
from skimage import io,colorimport skimage.morphology as smimport matplotlib.pyplot as pltimg=color.rgb2gray(io.imread('d:/pic/mor.png'))dst=sm.closing(img,sm.disk(9)) #用边长为5的圆形滤波器进行膨胀滤波plt.figure('morphology',figsize=(8,8))plt.subplot(121)plt.title('origin image')plt.imshow(img,plt.cm.gray)plt.axis('off')plt.subplot(122)plt.title('morphological image')plt.imshow(dst,plt.cm.gray)plt.axis('off')
注意,如果处理图像为二值图像(只有0和1两个值),则可以调用:
skimage.morphology.binary_closing(image, selem=None)
用此函数比处理灰度图像要快。
5、白帽(white-tophat)
函数:skimage.morphology.white_tophat(image, selem=None)
selem表示结构元素,用于设定局部区域的形状和大小。
将原图像减去它的开运算值,返回比结构化元素小的白点
from skimage import io,colorimport skimage.morphology as smimport matplotlib.pyplot as pltimg=color.rgb2gray(io.imread('d:/pic/mor.png'))dst=sm.white_tophat(img,sm.square(21)) plt.figure('morphology',figsize=(8,8))plt.subplot(121)plt.title('origin image')plt.imshow(img,plt.cm.gray)plt.axis('off')plt.subplot(122)plt.title('morphological image')plt.imshow(dst,plt.cm.gray)plt.axis('off')
6、黑帽(black-tophat)
函数:skimage.morphology.black_tophat(image, selem=None)
selem表示结构元素,用于设定局部区域的形状和大小。
将原图像减去它的闭运算值,返回比结构化元素小的黑点,且将这些黑点反色。
from skimage import io,colorimport skimage.morphology as smimport matplotlib.pyplot as pltimg=color.rgb2gray(io.imread('d:/pic/mor.png'))dst=sm.black_tophat(img,sm.square(21)) plt.figure('morphology',figsize=(8,8))plt.subplot(121)plt.title('origin image')plt.imshow(img,plt.cm.gray)plt.axis('off')plt.subplot(122)plt.title('morphological image')plt.imshow(dst,plt.cm.gray)plt.axis('off')
读到这里,这篇“python之基本形态学滤波实例分析”文章已经介绍完毕,想要掌握这篇文章的知识点还需要大家自己动手实践使用过才能领会,如果想了解更多相关内容的文章,欢迎关注编程网行业资讯频道。
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341