我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python OpenCV形态学运算示例分析

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python OpenCV形态学运算示例分析

今天小编给大家分享一下Python OpenCV形态学运算示例分析的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。

1. 腐蚀 & 膨胀

1.1什么是腐蚀&膨胀

腐蚀&膨胀是图像形态学中的两种核心操作

腐蚀可以描述为是让图像沿着自己的边界向内收缩

而膨胀则刚好与收缩相反,可以描述为是让图像沿着边界向内扩张。

这两种操作的逻辑和作用都和上篇讲到的使用滤波器做平滑处理有些类似,不同之处在于,腐蚀求的是滤波核内像素的最小值,而膨胀求的是最大值。并将计算出的值复制给锚点位置的像素。

作用上同平滑处理类似,可以消除噪声。

因为腐蚀求的是最小值,膨胀求的是最大值,所以经过腐蚀操作的图像的总体亮度会有所降低,而经过膨胀操作的图像的总体亮度会有所升高。

为方便示例,准备以下图片素材(test1.jpg):

Python OpenCV形态学运算示例分析

1.2 腐蚀方法 cv2.erode()

python中OpenCV使用cv2.erode()方法实现腐蚀操作。

该方法语法如下:

cv2.erode(class="lazy" data-src, kernel, anchor=None, iterations=None, borderType=None, borderValue=None)

  • scr 原图像

  • kernel 腐蚀要用到的核

  • anchor 锚点

  • iterations 可选参数,腐蚀操作的迭代次数,默认为1。

  • borderType 边界样式,可选。

  • borderValue 边界值,可选。

其中kernel这个参数,核,需要手动取创建一个数组,而不能是像滤波器那样指定一个大小。

import cv2import numpy as npimg = cv2.imread("test1.jpg")# 创建3*3的数组作为滤波核k = np.ones((3, 3), np.uint8)dst = cv2.erode(img, k)cv2.imshow("dst", dst)cv2.waitKey()cv2.destroyAllWindows()

腐蚀效果如下,如图,我们的鱼骨显得年代更久远了,鱼刺消失、变暗了相当一部分。

Python OpenCV形态学运算示例分析

1.3 膨胀方法 cv2.dilate()

python中OpenCV使用cv2.dilate()方法实现膨胀操作。

该方法语法如下:

dilate(class="lazy" data-src, kernel, dst=None, anchor=None, iterations=None, borderType=None, borderValue=None)

可以看出,其参数用法同cv2.erode()的参数。

import cv2import numpy as npimg = cv2.imread("test1.jpg")# 创建16*16的数组作为核k = np.ones((16, 16), np.uint8)dst = cv2.dilate(img, k)cv2.imshow("dst", dst)cv2.waitKey()cv2.destroyAllWindows()

膨胀效果如下,如图所示,图片众多鱼的亮度明显变高了。

Python OpenCV形态学运算示例分析

这种图像效果,也被称之为“近视眼”效果。

2. 开运算 & 闭运算

2.1 简述

开运算就是将图像先进性腐蚀操作,再进行膨胀操作。其可以用来抹除图像外部的细节(噪声)。

闭运算则与之相反

闭运算是先对图像进行膨胀操作,在进行腐蚀操作。其可以用来抹除图像的内部细节(噪声)。

腐蚀和膨胀虽然是逆操作,但是开运算和闭运算都不会使图像恢复原状。

2.2 开运算

以 3 为核

代码示例如下

import cv2import numpy as npimg = cv2.imread("test1.jpg")k = np.ones((3, 3), np.uint8)dst = cv2.erode(img, k)dst = cv2.dilate(dst, k)cv2.imshow("dst", dst)cv2.waitKey()  cv2.destroyAllWindows()

Python OpenCV形态学运算示例分析

2.3 闭运算

以 10 为核

代码示例如下

import cv2import numpy as npimg = cv2.imread("test1.jpg")k = np.ones((10, 10), np.uint8)dst = cv2.dilate(img, k)dst = cv2.erode(dst, k)cv2.imshow("dst", dst)cv2.waitKey()cv2.destroyAllWindows()

Python OpenCV形态学运算示例分析

3. morphologyEx()方法

3.1 morphologyEx()方法 介绍

在python中OpenCV还提供了morphologyEx()方法(形态学方法),可以用来完成所有常用的形态学运算。

morphologyEx()语法如下:

morphologyEx(class="lazy" data-src, op, kernel, dst=None, anchor=None, iterations=None, borderType=None, borderValue=None)

其中

  • scr 表示图像

  • op 表示操作类型

  • kernel 表示 核

  • anchor 表示锚点

  • iterations 为迭代次数,默认为1

  • borderType 是边界样式,默认1

  • borderValue 是边界值,默认1

可以供op选择的操作类型有:

参数值描述
cv2.MORPH_ERODE腐蚀
cv2.MORPH_DILATE膨胀
cv2.MORPH_ OPEN开运算,先腐蚀后膨胀
cv2.MORPH_CLOSE闭运算,先膨胀后腐蚀
cv2.MORPH_GRADIENT梯度运算,膨胀图减腐蚀图
cv2.MORPH_TOPHAT顶帽运算,原始图减开运算图
cv2.MORPH_BLACKHAT黑帽运算,闭运算图,减开运算图

接下来我们使用图片"test2.jpg"(下图)来继续下边的示例:

Python OpenCV形态学运算示例分析

3.2 梯度运算

对“test2.jpg”以 4 为核做梯度运算:

import cv2import numpy as npimg = cv2.imread("test2.jpg")  k = np.ones((4, 4), np.uint8)  dst = cv2.morphologyEx(img, cv2.MORPH_GRADIENT, k) cv2.imshow("dst", dst)  cv2.waitKey()  cv2.destroyAllWindows()

梯度运算,即膨胀图减去腐蚀图,因为膨胀运算得到的图像中我物体比原图中的“大”,而腐蚀运算得到的图像中的物体是收缩过的,比原图中的“小”,所以膨胀的结果减去腐蚀的结果,会得到一个大概的、不精准的轮廓。

test2.jpg梯度运算执行效果如下:

Python OpenCV形态学运算示例分析

3.3 顶帽运算

对“test2.jpg”以 4 为核做顶帽运算:

import cv2import numpy as npimg = cv2.imread("test2.jpg")k = np.ones((4, 4), np.uint8)cv2.imshow("img", img)dst = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, k)cv2.imshow("dst", dst)cv2.waitKey()cv2.destroyAllWindows()

顶帽运算,即原图减去开运算图,因为开运算抹除了图像的外部细节,所以顶帽运算即“有外部细节的图像 减去 无外部细节的图像”,得到的结果也就只剩外部细节了。

顶帽运算处理效果如下:

Python OpenCV形态学运算示例分析

3.4 黑帽运算

对“test2.jpg”以 4 为核做顶帽运算:

import cv2import numpy as npimg = cv2.imread("test2.jpg")k = np.ones((4, 4), np.uint8)dst = cv2.morphologyEx(img, cv2.MORPH_BLACKHAT, k)cv2.imshow("dst", dst)cv2.waitKey()cv2.destroyAllWindows()

黑帽运算,即原图像的闭运算减去原图像

因为闭运算可以抹除图像的内部细节,所以黑帽运算即 “无内部细节的图像减去有内部细节的图像”,结果只剩下内部细节。

黑帽运算处理效果如下:

Python OpenCV形态学运算示例分析

以上就是“Python OpenCV形态学运算示例分析”这篇文章的所有内容,感谢各位的阅读!相信大家阅读完这篇文章都有很大的收获,小编每天都会为大家更新不同的知识,如果还想学习更多的知识,请关注编程网行业资讯频道。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python OpenCV形态学运算示例分析

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python OpenCV形态学运算示例分析

今天小编给大家分享一下Python OpenCV形态学运算示例分析的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。1. 腐蚀
2023-06-29

Python中图像形态学运算技术的示例分析

这篇文章主要为大家展示了“Python中图像形态学运算技术的示例分析”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“Python中图像形态学运算技术的示例分析”这篇文章吧。1 图像形态学运算在Py
2023-06-29

Python-OpenCV深度学习的示例分析

这篇文章将为大家详细讲解有关Python-OpenCV深度学习的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。1. 计算机视觉中的深度学习简介深度学习推动了计算机视觉领域的深刻变革,我们首先解释深
2023-06-22

Python中opencv医学处理的示例分析

这篇文章给大家分享的是有关Python中opencv医学处理的示例分析的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。python可以做什么Python是一种编程语言,内置了许多有效的工具,Python几乎无所不能
2023-06-15

python中DataFrame运算的示例分析

这篇文章给大家分享的是有关python中DataFrame运算的示例分析的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。Python的优点有哪些1、简单易用,与C/C++、Java、C# 等传统语言相比,Pytho
2023-06-15

python之基本形态学滤波实例分析

本文小编为大家详细介绍“python之基本形态学滤波实例分析”,内容详细,步骤清晰,细节处理妥当,希望这篇“python之基本形态学滤波实例分析”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。引言对图像进行形态学变
2023-07-02

python三元运算符的示例分析

小编给大家分享一下python三元运算符的示例分析,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!三元运算符:我们经常会根据条件,将变量设置成不同的值:if sco
2023-06-27

Python中opencv操作的示例分析

这篇文章主要介绍Python中opencv操作的示例分析,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!直接读取图片def display_img(file="p.jpeg"): img = cv.imread(fi
2023-06-14

PHP运算符的示例分析

这篇文章将为大家详细讲解有关PHP运算符的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。l 逻辑运算符:概念:对表达式进行逻辑运算,运算出的结果是布尔类型的值(true,false)要求:参与逻辑
2023-06-15

Java位运算的示例分析

这篇文章给大家分享的是有关Java位运算的示例分析的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。位运算表达式由操作数和位运算符组成,实现对整数类型的二进制数进行位运算。位运算符可以分为逻辑运算符(包括~、&、|和
2023-06-02

php算术运算符的示例分析

这篇文章主要介绍php算术运算符的示例分析,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!php有什么特点1、执行速度快。2、具有很好的开放性和可扩展性。3、PHP支持多种主流与非主流的数据库。4、面向对象编程:PHP
2023-06-14

Python OpenCV图像识别的示例分析

小编给大家分享一下Python OpenCV图像识别的示例分析,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!一、人脸识别主要有以下两种实现方法:1、哈尔(Haar)级联法:专门解决人脸识别而推出的传统算法;实现步骤:创建H
2023-06-29

php中运算符的示例分析

这篇文章将为大家详细讲解有关php中运算符的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。相等运算符与全等运算符都属于比较运算符,都是二元运算符,返回值为true、false。 1.相等运算符(
2023-06-07

Python OpenCV阈值处理的示例分析

小编给大家分享一下Python OpenCV阈值处理的示例分析,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!前言图像分割是许多计算机视觉应用中的关键处理步骤,通常用于将图像划分为不同的区域,这些区域常常对应于真实世界的对象
2023-06-29

python数值运算实例分析

今天小编给大家分享一下python数值运算实例分析的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。说明1、对整数型和浮点型来说
2023-06-30

Python中图像算术与逻辑运算的示例分析

小编给大家分享一下Python中图像算术与逻辑运算的示例分析,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!一.图像加法运算图像加法运算主要有两种方法。第一种是调用
2023-06-29

Python机器学习之AdaBoost算法的示例分析

这篇文章将为大家详细讲解有关Python机器学习之AdaBoost算法的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。一、算法概述AdaBoost 是英文 Adaptive Boosting(自适
2023-06-15

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录