我的编程空间,编程开发者的网络收藏夹
学习永远不晚

九大数据分析方法之:周期性分析法

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

九大数据分析方法之:周期性分析法

大家好,我是爱学习的小xiong熊妹。

有小伙伴问:能不能系统介绍下数据分析方法。今天它来啦!数据分析常用的方法有九种,今天先介绍第一种,操作上最简单的:周期性分析法。它是新人们避免犯小白错误的最好方法。

做数据的新人最容易犯啥错?当然是一张嘴就被大家笑话:连这个常识都没有!

所谓的常识,很大一部分是周期性变化:到了这个时间,就会出这种事。周期性分析,主要是从日常杂乱的数据中,发现会周期性出现的规律,从而避免上述问题。常见的周期包括两种:自然周期/生命周期。

所谓自然周期,是指业务指标随着时间自然发生波动,比如上边吐槽的“2月份业绩自然少”,这是因为2月份过年,大家都放假了,业绩肯定少呀。

类似地:

吃喝玩乐类的消费,一般周六、周日比较多,这时候才有空出来玩。

企业间交易,一般工作日高,周末很低。大家都放假了谁还办公呀。

雪糕冰棍冰淇淋类商品,一般夏季是旺季,冬季是淡季

帽子手套暖手宝类商品,一般冬季是旺季,夏季是淡季

这些是比较直观的例子。需要注意的是,所谓的自然周期,对不同业务而言是不一样的,切不可混为一谈哦。

但是很多时候,自然周期表现并不直观,隐藏在日常起起伏伏的数据里。这时候就需要我们手动发现周期规律。比如比如一个公众号的阅读人数走势,可能如下图

一眼看过去,是不是弯弯曲曲,毫无规律可言?

这就需要手动做区分。为了更好的区分,一般取6个月的,每日的数据。因为六个月的时间,一般能涵盖2个季度,能观察出季节性变化。

同时,每日数据,能观察出每周是否有规律和每月是否有规律。不过上边例子只给个2个月的数据,那就凑合着用。

从上例蜿蜒起伏的波折里可以直接看出:没有明显的月规律。一般有月规律的数据会如下图所示(如下图)因此可以进一步观察,是否有周规律。

想看周规律,需要把数据做一下处理(如下图),把6个完整周的数据,从周一到周日对齐。之后做折线图,更容易观察出周规律。

处理过以后,可以看出:却有周规律变化,表现为:周一至周六逐步降低,周日反弹。如果把每周一到周日的数据做平均数,就能画出周规律曲线(如下图)

这里有很多明显不符合走势的点。这很正常,因为公众号发文也是有分类的,如果是卖东西的文章阅读就很低,派福利、抽奖类的阅读就高一点,搞党的《震惊!》《大厂!》《字jie!》的阅读就很高。所以除了日期,也和文章类型有关。

周期性分析,主要目的是做出一个参考曲线,为进一步判断提供依据。进而避免:“为啥周六阅读那么低呀!”这种低级小白问题。之后再结合内容标签,做进一步的分析。

比如上例中,第三周周一、周二是明显异常点。如果没有做标签,就会直接报警:“本周连续2天异常!请注意!”但是做了标签,如果发现周一发了卖货文(原本就该低)周二则是党(原本就该高)则不需要大惊小怪了。

还有一种周期是生命周期走势。比如一个活动上线,刚上线的时候肯定参与人很多,之后感兴趣的都参与过了,不感兴趣的都不参与了,因此人越来越少。这样就会出现如下图的走势。

注意:要发现生命周期走势,统计数据,是从一个业务开始的时候进行统计的,之后往后数:第1天/第2天/第3天……或者第1个月/第2个月/第3个月

生命周期走势有很多经典的运用。比如一款新商品上市,其销量和上市时间,经常有如下关系,因此被称为“商品生命周期”。类似的,还有“APP生命周期”“用户生命周期”的说法,都是一个时间轴+指标走势组合出来的。后续有机会再跟小伙伴们一一分享。

以上就是今天的分享。周期性分析看起来很简单,因为它主要是用来做参考线的,为后续各种分析方法铺路。很多复杂的分析,比如数据监控模型、数据预警模型、数据驱动决策,也是以周期性曲线为参照,所以小伙伴们先掌握基础方法,再循序渐进哦。今天的分享就到这里,谢谢大家!

 

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

九大数据分析方法之:周期性分析法

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

九大数据分析方法之:周期性分析法

数据分析常用的方法有九种,今天先介绍第一种,操作上最简单的:周期性分析法。它是新人们避免犯小白错误的最好方法。

数据分析经典方法之:周期性分析法

周期分析法,还是更深入分析的基础。比如做预测,如果能拆分出整体数据中周期规律,预测就非常简单!比如做指标异动分析,如果已知有几个因素在影响,每个因素自身周期规律,那么追溯真实原因也很容易。很多同学做得不深入的原因,就是对基础规律了解不够。​

九大数据分析方法之标签分析法

今天继续介绍九大数据分析方法系列。上一篇我们提到,如果想找两个指标之间相关关系,可以用相关分析法。但很多时候,我们想找的关系,不能用指标来表达。

九大数据分析方法:分层分析法

每种方法都不是万能的,分层分析的缺点,在于:只考虑一个分层指标。虽然简单,但是片面,不能全面说明问题。如果想采用二个指标,可以用矩阵分析法,如果想采用多个指标,可以用DEA模型。
数据分析DEA2024-12-02

九大数据分析方法:相关分析法

即使没有做分析,直观上看这些事件之间也有关系。但是不做分析的话,具体是啥样的关系,很难说清楚。而相关分析,就是找出这种关系的办法。

九大数据分析方法:矩阵分析法

今天继续分享九大数据分析方法系列:矩阵分析法。矩阵分析法是在各路数据分析文章中,出现频率最高的词。甚至有不懂行的小白把它捧到“核心思维”,“底层逻辑”的高度。哈哈,才没有那么神呢。

九大数据分析方法:Mece法

MECE是(Mutually Exclusive Collectively Exhaustive)的缩写,指的是“相互独立,完全穷尽”的分类原则。通过MECE方法对问题进行分类,能做到清晰准确,从而容易找到答案。

九大数据分析方法:指标拆解法

今天继续跟大家分享:九大数据分析方法系列。

九种常用数据分析方法!

9种最常用数据分析方法,解决90%分析难题!

数据分析:六大类分析方法

本文根据数据分析对象总结了六大类分析方法,每类方法里包含各种小方法,在实际数据分析过程中我们可以灵活运用这些方法来对数据进行高效率的处理。

业务数据分析方法之对比分析法

下面介绍几种常见又比较通用的数据分析方法,希望这些分析方法能够成为你进行数据分析和解决业务问题的利器。

数据分析的经典方法之结构分析法

类似的方法,还有矩阵分析法、趋势分析法、漏斗分析法。这些方法的共同点,就是:用一组有逻辑的指标,树立清晰的标杆,长期监控业务变化,从而快速得出结论。

数据分析的方法

数据分析的方法有:对比分析法,分组分析法,预测分析法,漏斗分析法,AB测试分析法,象限分析法,公式拆解法,可行域分析法,二八分析法,假设性分析法。数据分析的方法有:对比分析法,分组分析法,预测分析法,漏斗分析法,AB测试分析法,象限分析法,
2023-07-10

最全数据分析方法

编程学习网:相信大家都或多或少被数据分析搞得头晕眼花,本文将详细地介绍有关数据分析的五种方法,只为让读者更好的了解数据分析
最全数据分析方法
2024-04-23

新手必看:数据分析十大方法!

今天给大家分享一篇分析基础方法论的内容,对于感兴趣的分析方法,可以专门深入研究一波。

应对大数据分析的几个方法

在人口红利的时代渐渐褪去,比获得一个新的用户远不如留住老客户的成本。每一款产品,每一项工作服务,都应该核心企业关注的留存,确保做实每一个不同客户。可以理解通过数据分析的情况下保留,通过分析用户的行为或行为组和回访之间的关联,想方设法提高保留

Android解析JSON数据的方法分析

本文实例讲述了Android解析JSON数据的方法。分享给大家供大家参考,具体如下: JSON作为一种“轻量”的数据结构传递数据,在JS中有广泛的应用 Google公司对JSON的解析提供了gson.jar这个包,它不依赖于其他任何JAR包
2022-06-06

Android编程之九宫格实现方法实例分析

本文实例讲述了Android编程之九宫格实现方法。分享给大家供大家参考,具体如下: 显示九宫格需要用GridView , 要显示每个格子中的视图有两种方式,第一种方式是做成xml文件,再将xml文件做成视图。第二种方式就是在代码中构建出这样
2022-06-06

数据分析的5种细分方法

在数据分析工作中,细分思维的重要性,我认为再怎么强调都不为过。下面我们通过一些示例,介绍 5 种常见的细分方法。

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录